Схема включения лампы дрл

Схема подключения лампы ДРЛ и устройство лампы

Дуговая ртутная люминесцентная или люминофорная лампа чаще всего применяется в освещении открытых площадей, сельскохозяйственных территорий, а также производственных или складских помещений, вне зависимости от их размеров.

Правильная схема подключения лампы ДРЛ – гарантия долгой и беспроблемной работы такого современного осветительного прибора.

Устройство лампы ДРЛ

Основной принцип функционирования, а также непосредственно само устройство ДРЛ-ламп, относительно сложные, но именно это и помогает придавать современным осветительным приборам все необходимые качественные характеристики.

Горелка представлена тугоплавкими и обладающими химической стойкостью прозрачными материалами. Хорошо зарекомендовали себя современное кварцевое стекло или керамическое исполнение устройства. Внутренняя часть заполняется инертными газами с добавлением минимального количества ртути металлического типа.

Схема устройства лампы

В процессе подачи напряжения наблюдается возникновение тлеющего разряда, переходящего через определенный промежуток света в дуговой. Ограничение тока происходит при помощи сопротивления пускорегулирующих устройств.

Электрическим разрядом обуславливается появление хорошо различимого голубого или фиолетового излучения, возбуждающего свечение слоя люминофора, расположенного с внутренней стороны светопрозрачного баллона лампы.

В процессе горения отмечается сильный нагрев лампы, поэтому такой источник освещения применяется в приборах, оснащаемых термостойкими проводами и высококачественными патронами. Благодаря особому устройству, ДРЛ-лампа обладает высокими показателями световой отдачи, а также характеризуется повышенной устойчивостью к негативным внешним воздействиям.

Стабильная работоспособность сохраняется вне зависимости от внешних температурных показателей.

Средний срок эксплуатации качественного осветительного прибора этого типа от хорошо зарекомендовавших себя производителей составляет 10 тысяч часов. Некоторые недостатки, которыми характеризуется дуговая ртутная люминесцентная или люминофорная лампа, делают невозможным широкое применение такого источника света в жилых помещениях.

Основные функциональные части обычной лампы ДРЛ

Главные элементы современной дуговой ртутной люминесцентной или люминофорной лампы:

  • цокольное основание, подключаемое к патрону осветительного прибора;
  • кварцевая горелка, являющаяся центральным механизмом осветительного прибора;
  • стеклянный баллон, служащий основной защитной оболочкой всех внутренних элементов.

Как и большинство традиционных ламп, ртутно-люминесцентный источник освещения представляет собой стеклянный баллон, в нижней части которого устанавливается цоколь с резьбой. Свечение происходит за счёт наличия ртутно-кварцевой горелки, которая имеет форму трубки и заполняется смесью на основе аргона и ртути.

Четырех-электродные лампы оснащаются основными и дополнительными электродами, которые соединяются с главными катодами посредством противоположных полярностей при наличии дополнительного угольного резистора. Добавочные электроды не только стабилизируют работу осветительного прибора, но также способствуют значительному упрощению процесса зажигания.

Основной функцией цокольной части является прием сетевой электроэнергии посредством точечного и резьбового элемента с контактов патрона, который вмонтирован в осветительный прибор.

На следующем этапе осуществляется передача электрической энергии на электроды.

Внутри кварцевой колбы присутствует пара ограничителей сопротивления, которые включены в одну цепь с дополнительными электродами.

Особенностью внутренней поверхности стеклянной колбы является слой люминофора, который и отвечает за свечение.

Материал для ламп

Конструкцией ртутно-люминесцентного источника освещения предусматривается обязательное наличие стандартной стеклянной колбы, которая выступает в качестве барьера, отделяющего любые внешние неблагоприятные факторы от функциональной части, а также предотвращает их остывание.

Кроме всего прочего, на внутреннюю поверхность баллона наносится тонкий слой люминофора, легко преобразующего ультрафиолетовое излучение в красный спектр свечения.

Объединенные синие, красное и зеленое излучение обуславливают получение в результате традиционного белого свечения.

Схема подключения лампы ДРЛ через дроссель

Одним из основных отличий ДРЛ-ламп от остальных осветительных приборов является подключение к электрической сети посредством пускорегулирующей аппаратуры или ПРА, представленной дросселем. Это стабилизирующее устройство способствует преобразованию номинального сетевого напряжения в пусковое. Отсутствие дросселя спровоцирует практически мгновенное перегорание лампочки при включении.

Схематично такой вариант подключение можно представить в виде последовательного подсоединения дуговой ртутной люминесцентной или люминофорной лампы при помощи дросселя к электрической сети.

Схема подключения лампочки через дроссель

В большинстве своём, все современные и качественные светильники, относящиеся к категории ртутно-люминесцентных ламп, характеризуются наличием уже встроенной пускорегулирующей аппаратуры. Такие модели несколько дороже стандартных светильников.

Бюджетные модели необходимо снабжать дросселем самостоятельно. Любые дроссели функционируют в качестве стабилизатора, а также эффективно корректируют работу осветительного прибора.

Благодаря правильной работе пускорегулирующей аппаратуры, ртутно-люминесцентные лампы в процессе эксплуатации не мигают и работают в непрерывном режиме даже при наличии нестабильного входящего напряжения.

Заключение

Владельцами загородной недвижимости такие современные источники света ценятся очень высоко за возможность получить качественное освещение с минимальными затратами времени и денежных средств.

Видео на тему

Источник: proprovoda.ru

Лампа освещения ДРЛ

Еще недавно лампа освещения ДРЛ (дуговая ртутная люминесцентная) была самой распространенной в уличных светильниках. Однако лампы ДНаТ по многим светотехническим характеристикам превосходят лампы освещения ДРЛ, но тем не менее сегодня на рынке у них большой выбор и они много где до сих пор применяются. В первую очередь это связано с цветопередачей, у ДРЛ белый дневной цвет, у ДНаТ оранжевый.

Принцип работы лампы освещения ДРЛ

Лампа освещения дуговая ртутная люминесцентная

  1. – колба из стекла, наполненная парами ртути
  2. – обыкновенный цоколь, может быть Е14, 27, 40
  3. – горелка
  4. – основные рабочие электроды
  5. – поджигающий электрод
  6. – резистор, ограничивающий пусковой ток

Принцип работы

На основной и поджигающий электрод подается напряжение. Так как они между собой находятся близко, то образовывается тлеющий разряд и в нем возникает большое количество свободных электронов и положительных ионов. Это тем самым вызывает разряд между рабочими электродами, и он преобразовывается в дугу и разряд, излучающий сильное ультрафиолетовое излучение. Оно не создает видимый для человеческого глаза свет. По этой причине на внутренней стороны колбы нанесен слой люминофора, который при помощи эффекта люминесценции создает освещение, которое мы знаем и видим.

Особенности работы

Освещенность ртутной люминесцентной лампы прямо пропорциональна напряжению питающей электрической сети. При его понижении на 10 %, освещенность уменьшается на 20 – 25 %. Если напряжение уменьшается до 80 % от номинального (220 В), то она может не зажечься, а работающая может погаснуть. При работе она сильно нагревается. По этой причине рекомендуется использовать при подключении патрона в светильниках термостойкие провода. Во время включения в ней проходит большой ток, и пары ртути постепенно переходят в газообразное состояние. Стабилизация процессов до рабочего длиться 10 – 15 минут. Так же стоит отметить, что чем ниже температура, тем дольше она будет разгораться. Если пропало напряжение, и лампа потухла, то она не включится заново, пока не остынет.

Рис.2. Светотехнические характеристики

Как видно из таблицы, энергоэффективность ламп ДРЛ (50 – 60 Люмен/Ватт) существенно меньше ДНаТ (80 – 120 Люмен/Ватт). Но, тем не менее, они широко применяются для освещения дворовых территорий, улиц, садов, парков, а так же для подсветки домов и зданий. Основной тип светильников, где они используются, это ЖКУ.

Схема подключения

Рис. 3. Подключение дросселя

Если ее включить без подключения дросселя ДРЛ, то она перегорит. Выбор дросселя осуществляется в соответствии с ее мощностью. Самая распространенная мощность 125, 250, 400 Вт. Дроссель уменьшает пусковой ток, а конденсатор компенсирует реактивную составляющую мощности, что экономит электроэнергию до 50 %. Дроссель и конденсатор это пускорегулирующая аппаратура, которая идет в комплекте со светильником.

Читайте также:  Магнитный пускатель пме 211 схема подключения

В последнее время в продаже появились лампы освещения ДРЛ прямого включения, то есть включается в сеть без дросселя.

Так как внутри ДРЛ находятся пары ртути, то к ее хранению предъявляются особые требования.

Источник: stroymasterok.com

Новинка электротехники: лампа ДРЛ

Дуговая ртутная лампа (ДРЛ) – это источник света, который стал часто применяться для электрификации помещений с большой площадью (производственные цеха, площадки, скверы). Лампа ДРЛ не отличается качественной передачей цвета, но характеризуется высокой светоотдачей. Её мощность колеблется в пределах от 50 до 2000 Вт. Она используется в условиях переменного тока, при котором напряжение составляет 220 В. Чтобы обеспечить синхронизацию лампы типа ДРЛ с источником питания, обязательно наличие пускорегулирующего аппарата, которым в лампе выступает дроссель.

Дуговая ртутная лампа

Разновидности

  • Дуговые ртутные люминесцентные лампы. Отличаются относительно посредственными свойствами передачи цвета, во время их работы выделяется много тепла. Время выхода на рабочий поток составляет около 5 минут. Они не устойчивы к скачкам напряжения, по этой причине рекомендуется использовать их при наличии регулярного источника электричества.

Конструкции, связанные с ними, в целях безопасности должны обладать термостойкими приводами.

  • Дуговые ртутные эритемные вольфрамовые (ДРВЭД). Принцип работы такой лампы ДРЛ предусматривает ее использование без наличия дросселя. Их подключение происходит через активный балласт, подобно традиционным лампочкам накаливания. Благодаря йодидам металлов в их конструкции, достигается высокий уровень светопередачи, и снижается расход электроэнергии. Также наличие увиолевого стекла позволяет хорошо пропускать ультрафиолетовые лучи. Такие технические характеристики лампы ДРЛ делают её отличным изделием для иллюминации помещений с дефицитом ультрафиолетового излучения.
  • Дуговые ртутные люминесцентные лампы (ДРЛФ), которые способствуют фотосинтезу растений. Их также называют рефлекторными, так как внутренняя поверхность их колбы покрыта отражающим материалом. Устройство является наиболее эффективным в сети с переменным током. Эта ртутная лампочка обычно эксплуатируется в сфере фотобиологии для снабжения дополнительным светом теплиц и парников.

Использование ламп ДРЛФ для освещения теплицы

  • Дуговые ртутные вольфрамовые лампы. Дуговая лампа ДРЛ имеет следующие характеристики: эффективная светоотдача и долгий период работы даже без наличия ПРА, по сравнению с остальными разновидностями. Применяется для освещения открытых широких объектов: улиц, парков, площадок.

Конструкция

Конструкция лампы ДРЛ

Лампа ДРЛ состоит из следующих элементов:

  1. Главные электроды.
  2. Электроды поджигания.
  3. Вводы электродов.
  4. Резервный газ.
  5. Позистор.
  6. Ртуть.

Когда только начинали изготавливаться лампы ДРЛ, их схема включала в себя лишь пару электродов. Для ее подключения был необходим источник высоковольтных импульсов, который имел очень маленькую длительность функционирования. Уровень знаний в сфере электрики на то время не позволял создавать качественные зажигающие устройства, поэтому в 70-х годах прошлого века их производство остановилось. Теперь же появились светильники с двумя парами электродов, для включения которых не нужны ПА.

Дуговая ртутная лампа содержит следующие функциональные элементы:

  1. Цоколь с резьбой. Осуществляет прием электричества из источника посредством резьбового и точечного контактов. После этого электроимпульсы передаются на электроды горелки.
  2. Ртутная горелка из кварца – главный компонент, наполненный парой ключевых и парой вспомогательных электродов. Она заполнена аргоном и ртутью, благодаря которым происходит теплообмен внутри лампы ДРЛ.
  3. Стеклянный баллон – внешняя деталь с кварцевой горелкой с проводниками внутри. Устройство баллона наполняют азотом. Также вмещает в себя пару ограничивающих сопротивлений и покрывается люминофором изнутри.

Принцип работы

Конструкция стеклянной или керамической горелки с термоустойчивыми свойствами наполняется тщательно отмеренным количеством инертного газа. Также её заполняют ртутью, которая при выключенной лампе принимает форму маленького шарика или оседает на стенках ёмкости. Генератором света здесь является пилон электрического разряда. Эти технические характеристики прямо влияют на схему подключения лампы ДРЛ с помощью дросселя.

Важно предельно аккуратно пользоваться ДРЛ, ведь она вмещает в себя пары ртути. Разбитая колба влечет за собой распространение токсичных паров на площадь в 20 кв. м.

Алгоритм включения ламп

  1. Люминесцентная лампа получает напряжение из сети, оно поступает в промежуток между главным и второстепенным электродами с одной стороны, и на аналогичный промежуток – с другой. Очередной областью, на которую воздействует ток, выступает пространство между парами главных электродов в горелке.
  2. Так как расстояние между главным и второстепенным электродами очень мало, происходит эффективная ионизация газа. Напряжение на данном пространстве обязательно сопровождается сопротивлениями. После завершения ионизации с двух концов горелки, оно переходит на интервал между главными электродами. Это основополагающий принцип схемы включения и горения лампы ДРЛ.
  3. Горящая лампа достигает пика своей производительности спустя 5 минут. Такое количество времени обусловлено агрегатным состоянием охлаждённой ртути. После включения она, нагреваясь, постепенно испаряется, тем самым улучшая силу разрядов. Как только ртуть полностью превратится в газ, лампа ДРЛ станет демонстрировать лучшие показатели отдачи света.

Как только лампа погаснет, её очередное включение становится возможным только после того, как она целиком охладеет. Это один из недостатков такого метода освещения, так как он зависим от качества электричества.

Подключение

Процедура включения 4-электродной лампы являет собой цепь из дросселя и ДРЛ, соединенных последовательным способом и подключенных к сети. Схема подключения через дроссель не зависит от полярности подключения. Так как главная его задача – стабилизировать работу светильника, важно подбирать дроссель, соответствующий мощности лампочки. С целью регулирования реактивной мощности и существенной экономии электричества схема может включать в себя конденсатор.

Схема

Подключение этой лампы к системе подачи питания осуществляется через дроссель, выбор которого связан с мощностью ДРЛ. Основная функция дросселя состоит в ограничении тока, который питает лампу. В случае подключения лампы без него, она сразу же сгорит, поскольку напряжение будет слишком высоким. В схему также нужно включить конденсатор, который в результате своего влияния на реактивную мощность помогает экономить электроэнергию в несколько раз.

Схема подключения лампы ДРЛ

Бездроссельное подключение лампы ДРЛ не допустимо по причине высокого пускового напряжения, когда лампочка может попросту сгореть.

Преимущества ламп ДРЛ

  • Долгосрочная служба (в среднем – 10 тыс. часов);
  • Эффективная светоотдача – до 50 лм/Вт;
  • Стабильное бесперебойное функционирование на протяжении всего периода работы;
  • Показатель светопередачи позволяет использовать такие лампы как для освещения на улице, так и в помещениях промышленного назначения.
  • ДРЛ излучают свет, близкий по своей цветовой температуре к дневному (4200 К);
  • Неприхотливы к особенностям внешней среды (за исключением сильных морозов);
  • Компактные габариты в сочетании с высокой единичной мощностью.

Минусы ламп ДРЛ

  • Функционируют только с балластами, дросселями при наличии переменного тока;
  • Их цветовой спектр включает в себя лишь оттенки синего и зелёного цветов, что не даёт реалистичного освещения;
  • Требуют относительно долгого времени на включение, которое увеличивается в зависимости от снижения температуры окружающей среды;
  • Невысокая передача света;
  • Сильная чувствительность к перепадам сетевого напряжения;
  • Повторное зажигание занимает 5 минут и более, так как перед этим лампа должна полностью остыть;
  • Мощные пульсации потоков света;
  • В конце периода службы световой поток снижается.

Почему тухнут. Видео

Ответ на вопрос, почету тухнут лампы ДРВ, можно найти в этом видео.

Источник: elquanta.ru

Подключение к сети ламп ДНаТ и ДРЛ

Первыми электрическими источниками света, появившимися в конце XIX века, были газоразрядные лампы. Дуга в них горела на открытом воздухе, в котором присутствует кислород. Поэтому время их работы было небольшим, всего несколько часов, а свечение неустойчивым.

Читайте также:  Переключение звезда треугольник схема

Однако идея эта оказалась очень продуктивной, ведь КПД газоразрядных ламп в пять-шесть раз выше, чем ламп накаливания. Поэтому в середине прошлого века, после достижения необходимого технологического уровня, сначала появились газоразрядные лампы низкого давления, а потом и высокого.

Средой распространения электрического разряда в них является инертный газ, обычно аргон. А для увеличения ее электрической проницаемости к нему добавляют соли металлов – ртути или натрия.

Дуговые лампы высокого давления

Повышение давления среды, в которой распространяется электрический заряд и возникает светящаяся дуга, позволяет получить более интенсивный световой поток, затратив на это меньшую энергию. Для примера: светоотдача натриевых ламп низкого давления не превышает 100 люмен на ватт, а у ламп высокого давления это значение более 200 люмен на ватт. Поэтому их используют для наружного освещения или в помещениях большой площади – теплицах, ангарах, производственных цехах.

Принципиальное устройство ртутных и натриевых дуговых ламп высокого давления имеет много схожих черт, но есть и различия, из-за которых схема подключения натриевой лампы иная, чем у ртутной. И они не взаимозаменяемы. Отличить эти осветительные приборы друг от друга можно как по обозначению, так и внешне. ДРЛ – дуговая ртутная лампа, ДНаТ – дуговая натриевая трубчатая. А внешние отличия станут вам понятны из разбора их устройства. Итак, они состоят из следующих элементов:

  • Газовой горелки.
  • Набора электродов.
  • Внешней колбы.
  • Цоколя.

Газовая горелка

В обоих случаях она выполняется в виде трубки из жаропрочного кварцевого стекла. Но у ДРЛ ее размеры больше, чем у ДНаТ. Из-за высокой химической активности натрия в состав стекла горелки вводят алюминиевые квасцы – Al2O3. Внутрь горелки закачан инертный газ – аргон – под давлением 100-150 кПа. А также находится ртуть или натриевая амальгама (сплав Na и Hg).

Набор электродов

У ламп ДРЛ их четыре: два основных и два поджигающих. Пары расположены на противоположных концах колбы и подключены к разным полюсам питающей линии. А у ДНаТ электродов только два. Это и обуславливает различия в способе запуска и построении схемы подключения ламп.

У ртутных источников света дуга загорается от малой искры, возникающей между противоположными по знаку электродами. А натриевым требуется поджигающий импульс. Причем у ДРЛ первых выпусков (до середины 60-х годов прошлого века) было два электрода и применялся такой же принцип включения, но впоследствии от него отказались.

Внешняя колба

Это основной визуальный отличительный признак ламп. Внутри колбы вакуум, который обеспечивает химическую и термическую устойчивость стекла горелки. Но у ДРЛ она белого или матового цвета, а колба ДНаТ прозрачная.

На внутреннюю поверхность колбы ртутной лампы нанесен слой люминофора. Дело в том, что горение паров ртути вызывает мертвенно-зеленое или синее свечение, чрезвычайно искажающего восприятие действительности глазом человека. Люминофор сдвигает его спектр в область ослепительно белого света, что вполне приемлемо для уличного освещения.

Натриевые лампы светят красным или ярко-оранжевым цветом. Лучи света этой частоты практически не преломляются водяной взвесью, которая может висеть в воздухе (снег, туман, моросящие осадки, брызги), поэтому его используют для освещения автострад. Необходимость в спектральном сдвиге отсутствует, поэтому колба прозрачная.

Цоколь

У обеих ламп для подключения к питающей лини используется так называемый резьбовой цоколь Эдисона, обозначаемый буквой Е. Поскольку мощность дуговых ламп высокого давления обычно превышает 250 Вт, применяются модели Е40, диаметром 400 мм. По этой же причине рекомендуется использовать керамические патроны, способные выдерживать сильный нагрев.

Схемы подключения

Набор элементов для запуска газоразрядных ламп высокого давления называется пускорегулирующей аппаратурой (ПРА). В последнее время появились ее электронные аналоги (ЭПРА), в которых все детали установлены в одном корпусе. Они обеспечивают более оптимальный режим работы ламп, но имеют абсолютно тот же принцип действия. Поэтому для лучшего понимания рассмотрим все элементы по отдельности.

Схема включения ДРЛ представлена на рисунке ниже.

Ее основным элементом является балластный дроссель. Это катушка индуктивности на ферромагнитном сердечнике, обычно имеющем форму тора. Ее задачей является гашение пускового тока, который в первые секунды после включения близок к току короткого замыкания, ведь расстояние между основным и вспомогательными электродами не более миллиметра.

Действие дросселя основано на эффекте возникновения магнитного потока в сердечнике, направление которого противоположно току, его породившего. Катушка индуктивности должна быть рассчитана на ту же мощность, что и лампа. Конденсатор необходим для того, чтобы сглаживать пульсации тока, возникающие при горении дуги. В принципе, он является необязательным элементом.

Если у вас нет заводского дросселя, ДРЛ можно зажечь, включив последовательно с ней лампу накаливания той же или большей мощности. Как вариант – автотрансформатор, с помощью которого можно обеспечить плавный запуск устройства. Обычно горение дуги стабилизируется через 10-12 минут после включения.

Схема включения ДНаТ сложнее. В ней вы видите дополнительный элемент – ИЗУ (Импульсное Запускающее Устройство).

ИЗУ – это тиристорный генератор непрерывных импульсов. Одна из его схем представлена на рисунке ниже. Она рассчитана на двухточечное подключение.

Однако существует и трехточечный вариант.

Дуговые лампы высокого давления имеют очень большую энергетическую эффективность, особенно ДНаТ. По ней и по количеству часов непрерывной работы они практически не уступают светодиодным лампам. При этом их надежность зачастую выше. Поэтому эти источники света еще рано списывать в разряд технических раритетов.

Источник: electriktop.ru

Электронный балласт для газоразрядных ламп ДРЛ, ДНАТ

Назначение устройства

Устройство предназначено для использования совместно с газоразрядными лампами, взамен балластных дросселей.

Традиционное использование дросселей, в качестве ограничителей тока, приводит к возникновению значительной величины реактивной и полной потребляемой от сети мощности. Так, при использовании дросселей для ламп ДРЛ-125 коэффициент реактивной мощности =0,55. Электронные балласты повышают коэффициент мощности более чем до 0,92 с учётом потерь на переходах полупроводниковых приборов и токоограничительных элементах схемы. Один из известных недостатков газоразрядных ламп высокого давления – это невозможность быстрого повторного включения. Часто, при кратковременных “скачках” напряжения сети лампы гаснут и приходится ожидать несколько минут для повторного включения ламп. Это происходит при работе электроинструмента, сварочного оборудования в одной сети с лампами. Использование электронного балласта устраняет этот недостаток, лампы продолжают работать при “просадках” напряжения. Если же лампа погасла, то повторное включение происходит несколько раньше, чем при работе с дросселем.

Лампы ДРЛ, ДНАТ, в отличие от газоразрядных ламп комнатного освещения, не теряют интенсивности свечения при низких температурах воздуха. Лично я использую указанные выше лампы для освещения гаража, они являются основным источником света зимой, когда лампы ЛБ, ЛД едва светятся.

Для меня использование электронного балласта стало особенно актуальным при непрерывном росте стоимости электроэнергии.

Принципиальная схема и детали

Поиск готовых схемных решений электронных балластов привёл меня в уныние и негодование. Несмотря на активное использование энергосберегающих ламп, схем простых балластов для ламп ДРЛ я не смог найти.

Читайте также:  Схема переключения звезда треугольник асинхронного двигателя

Однако, удалось найти статью, рекламирующую полупроводниковые приборы фирмы International Rectifier с названием: «МОП-транзисторы улучшают КПД и удлиняют срок службы электронных балластов осветительных приборов»

Статья описывает достоинства использования МОП – транзисторов в полумостовых преобразователях. Именно по такой схеме построен балласт, как и большинство используемых сейчас балластов в энергосберегающих лампах. Основной сложностью создания балласта является отсутствие информации о типах и размерах магнитопроводов для трансформатора и балластного дросселя. Указанный в статье тип сердечника не дает возможности определить магнитную проницаемость, форму и размеры, необходимую информацию найти не удалось. Моя статья поможет вам определиться в выборе материалов и использовать доступные детали. В балласте изменена схема запуска, так как в наличии не оказалось двуханодных динисторов на момент испытаний. Уменьшено количество элементов, отсутствует управление включением ламп при наступлении сумерек. Таким образом, схема максимально упрощена. Дальнейшее описание будет предполагать нумерацию элементов указанную на схеме:

Известно, что полумостовые преобразователи с индуктивной обратной связью работают в режиме насыщения трансформатора Т1, таким образом, частота переключения транзисторов будет зависима от совокупности сразу нескольких факторов: тока протекающего в цепи лампы, тока в цепях L1, R6, VD2, L2, R7, VD3. Ток в цепи лампы непосредственно зависит и от частоты работы преобразователи и от индуктивности обмотки L4 трансформатора Т2. Таким образом, при создании первого экземпляра устройства, однозначно определить необходимое количество витков трансформаторов сложно. Первые экземпляры балластов намерено были изготовлены с магнитопроводом трансформатора Т2 избыточного сечения, чтоб исключить его насыщение. После успешного запуска и испытаний были уточнены размеры трансформаторов, количество витков, величина немагнитного зазора.

Таким образом, для использования с лампами ДРЛ 125, в качестве Т2, подойдёт ферритовый броневой магнитопровод из двух чашек M2000НМ, диаметром 30мм. В качестве трансформатора Т1 применено кольцо М2000НМ 17х10х5. Обмотка L3 содержит – 2,5 витка монтажного провода поверх обмоток L1, L2 в которых по 20 витков провода ПЭВ 0,35. Обмотки L1, L2 наматываются одновременно в два провода. При этом обмотка L4 содержит 52 витка, L5 – 3 витка провода ПЭВ 0,62 Немагнитный зазор трансформатора Т2 около 0,6мм.

При использовании указанных материалов, частота работы преобразователя около 38кГц в начале “разгона” лампы, и около 67 кГц после выхода лампы в рабочий режим.

Так как балласты изготавливались из материалов, которые были в наличии, то следующий экземпляр отличался размером магнитопровода Т1. На этот раз использовалось кольцо вовсе неизвестной магнитной проницаемости с размерами 14х8х4,5. В качестве Т2, тот же магнитопровод из двух чашек 30мм.

Изменяя количество витков обмоток L1, L2 можно в значительной степени изменять частоту работы преобразователя, но при этом придется корректировать количество витков обмотки L4 трансформатора T2. Так второй экземпляр устройства настроен на частоту преобразования 50-75 кГц, при этом L1, L2 содержат по 10 витков, L3 – 1,5, а L4 всего 39 витков, того же провода, что и в первом балласте. Частоту преобразователя так же можно изменить используя стабилитроны VD2, VD3 на различные напряжения и резисторы R6, R7 разного сопротивления. Речь идет об изменении тока в указанных цепях, просто различными способами, наиболее удобными для конкретного случая. Не стоит забывать, что рабочий диапазон частот для материалов М2000НМ до 100кГц.

В качестве VD2, VD3 использованы импортные стабилитроны в стеклянном корпусе 12В, мощностью 1,2Вт, парами соединённые катодами. В качестве теплоотводов использованы радиаторы выходных транзисторов кадровой развёртки телевизоров 3УСЦТ.

На схеме в скобках указаны элементы, используемые в балластах для ламп ДНАТ 250, ДНАТ 400. В схеме можно использовать транзисторы, указанные в статье, файл которой прилагается. В моём случае использовались транзисторы от старых блоков питания компьютеров: 2SK1024 и 2SK2828 – для ламп ДРЛ125. Для ламп ДНАТ 250, ДНАТ 400, пришлось приобрести IRFP460.

В балластах для ламп ДНАТ кроме более мощных транзисторов необходимо применить теплоотвод большей площади. Вполне подходит радиатор охлаждения процессоров ПК размером 90х65х35. В схеме для ламп ДНАТ в качество стабилитронов VD2, VD3 используется по одному стабилитрону Д815Е без теплоотвода. Трасформатор Т1 намотан на кольце 30х20х6,5 мм. L1, L2 по 20 витков ПЭВ 0,35, L3 – 1,5 витка монтажного провода. Трансформатор Т2 выполнен на броневом магнитопроводе М2000НМ из двух чашек диаметром 50мм, с немагнитным зазором около 1мм. L4 cодержит 34 витка провода ПЭТВ 0,95, L5 – один виток того же провода (для ДНАТ 250). Частота работы при этом 14-20 кГц. Как уже было сказано выше, частоту преобразователя можно изменить различными способами, в том числе используя магнитопроводы разного размера для Т1. В данном случае столь крупное кольцо применено лишь по причине отсутствия в наличие другого подходящего по размерам. Необходимо заметить, что при применении колец меньшего размера следует контролировать температуру магнитопровода, в случае значительного нагрева изменить режим работы балласта, либо применить кольцо большего размера. При монтаже трансформатора Т1, подключать обмотки необходимо согласно рисунка.

Обмотки L1, L2 на рисунке изображены намотанными отдельно друг от друга лишь для более понятного считывания правила подключения обмоток. Под указанные элементы рассчитаны печатные платы на рисунке. Не крепить трансформатор Т2 к плате металлическими деталями через центральное отверстие. Мы делаем балласт, а не индукционную печь!

Настройка устройства

Настройка устройства заключается в подборе количества витков обмотки L4, для получения необходимого значения напряжения на лампе, после её прогрева. Так, для ламп ДРЛ 125, рабочим напряжением считается величина действующего напряжения 125В.

Большинство простых мультиметров не даст возможности измерить напряжение на лампе на частотах работы преобразователя. Для настройки лучше воспользоваться осциллографом. Современные осциллографы способны измерять действующее значение напряжения, в том числе с учётом формы сигнала. Если ваш осциллограф не имеет этой функции достаточно определить амплитудное значение напряжения. Так как напряжение на лампе близко по форме к синусоидальному, вычислить действующее (оно же эффективное или среднеквадратичное) значение напряжение можно умножив амплитудное значение на 0,7.

При настройке устройства было замечено, что лампы разных производителей требуют индивидуальной настройки балласта. Так, если балласт настроен для ламп ДРЛ 125 (8) «Лисма», то при использовании ламп ДРЛ 125 (6), напряжение на лампах после прогрева достигает лишь 80В вместо 125. В данном случае необходима настройка под указанный тип лампы. При настройке балластов под лампы ДНАТ 250 – 400 следует помнить, что их рабочее напряжение, после прогрева около 15мин, – 100В.

Убедитесь в работоспособности цепей защиты (VD5, R8, C3, VD6, R9, VT4), подачей переменного напряжения от внешнего источника. При достижении напряжения немногим более 32В балласт должен отключиться. В случае неисправности цепей защиты, при включении устройства без лампы или при выходе её из строя, возможен выход из строя конденсатора С4, так как на нем возникает значительное напряжение. Так конденсатор на 1кВ выходит из строя в течение пары секунд, это результат работы последовательно колебательного контура L4C4. Такая схемотехника позволяет использовать балласт для ламп ДНАТ без специального пускового устройства.

Источник: cxem.net