Схемы и способы подключения электродвигателей

Одним из ключевых моментов, обеспечивающих нормальную работу привода, является правильная схема подключения электродвигателя – ключевого звена цепи. Соблюдение всех соединений гарантирует отсутствие нештатных ситуаций, повреждения обмоток, долговечную работу и прогнозируемую агрегата. Важно понимать, что существуют общепринятые решения для включения эл. моторов одно- и трехфазных (220 и 380 В), с потреблением постоянного/переменного тока, с пускателем и защитой теплового реле, а также специфические схемы, например, моторы с фазным ротором, или П 41, работающие на 110/220 В, выходящие за привычные рамки.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Источник: electricvdele.ru

Запуск электродвигателя по схеме «звезда-треугольник» номиналом 30 кВт

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

>

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Источник: kipservis.ru

Разработка на тему: “Монтаж схемы пуска асинхронного двигателя”

При пользовании «Инфоуроком» вам не нужно платить за интернет!

>

Минкомсвязь РФ: «Инфоурок» включен в перечень социально значимых ресурсов .

Другой контакт управления магнитного пускателя соединяем с контактом катушки магнитного пускателя.

Контакт А1 катушки магнитного пускателя соединяем с нормально замкнутым контактом управления теплового реле.

Второй нормально замкнутый контакт управления теплового реле соединяем с нулевой шиной.

После сборки электрической схемы производим её проверку :

Проверяем правильность монтажа;

Производим проверку сопротивления изоляции проводов;

Производим опробования работоспособности схемы без нагрузки.

Техника безопасности при монтаже двигателя

Электроустановки должны быть укомплектованы испытанными, готовыми к использованию защитными средствами и изделиями.

Средства защиты, инструмент и приспособления, применяемые при обслуживании и ремонте электроустановок должны удовлетворять требованиям соответствующих государственных стандартов и действующих правил применения и испытания средств защиты.

Перед началом всех видов работ в электроустановках напряжением до 1 ООО В со снятием напряжения необходимо проверить отсутствие напряжения на участке работы.

Проверка напряжения между фазами, каждой фазой по отношению к земле и к нулевому проводу должна быть проведена после отключения той части электроустановки, на которой будут проводиться работы, и вывешивания предупреждающих и запрещающих плакатов.

При выполнении монтажных работ разрешается применять только исправный ручной инструмент.

Алгоритм (порядок выполнения) сборки схемы нереверсивного пуска асинхронного двигателя

Для запуска электродвигателя потребуется:

Трёхфазный и однофазный автоматические выключатели;

Монтажные провода и кабеля.

Монтажная схема соединений запуска нереверсивного асинхронного электродвигателя

Монтаж схемы запуска асинхронного электродвигателя состоит из двух этапов:

Монтажа силовой части;

Монтажа схемы управления.

На верхние контакты трёхфазного автоматического выключателя подключаем электрический силовой кабель от РУ.

Соединяем нижние контакты трёхфазного автоматического выключателя с верхними силовыми контактами магнитного пускателя при помощи силовых проводов.

Соединяем нижние силовые контакты магнитного пускателя с верхними силовыми контактами теплового реле при помощи силовых проводов.

На нижние силовые контакты теплового реле подключаем силовой кабель от асинхронного электродвигателя.

При помощи провода соединяем нижний контакт фазы «А» трехфазного автоматического выключателя с верхним контактом автоматического однофазного выключателя.

Нижний контакт автоматического однофазного выключателя соединяем с одним из контактов нормально замкнутого контакта кнопки «Стоп». Другой контакт нормально замкнутого контакта кнопки «Стоп» соединяем с нормально разомкнутым контактом кнопки «Пуск». Этот же контакт соединяем с нормально разомкнутым контактом управления магнитного пускателя.

Второй контакт нормально разомкнутого контакта кнопки «Пуск» соединяем с контактом катушки магнитного пускателя.

Источник: infourok.ru

Схема подключения трехфазного электродвигателя к трехфазной сети

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

>

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Источник: onlineelektrik.ru

Схемы подключения УПП

В данной статье мы рассмотрим различные схемы подключения устройств плавного пуска на примере УПП Prostar PRS2.

Софтстартеры выпускаются множеством производителей, и у всех есть свои особенности. Однако существуют общие принципы подключения, справедливые для любой модели УПП.

Все проводники, подключаемые к пускателю, можно разделить на силовые и управляющие. Силовые цепи отвечают за подачу питания. Управляющие цепи – это цепи включения/выключения (коммутации), сигнализации и т. п. Они обеспечивают не только запуск и остановку двигателя, но и защиту софтстартера в случае аварийных ситуаций.

Общая схема подключения устройства плавного пуска Prostar PRS2 имеет следующий вид:

Силовая часть

В силовую часть входят:

  • Вводной автоматический выключатель QF
  • Силовые тиристоры (на схеме не показаны, находятся внутри УПП)
  • Обводной (шунтирующий) контактор КМ
  • Асинхронный электродвигатель М
  • Цепь питания катушки шунтирующего контактора (предохранитель FU и контакты внутреннего реле 01 и 02)

Напряжение на входные силовые контакты L1, L2, L3 и на контакты обводного контактора КМ подается через автоматический выключатель QF, который также используется для защиты устройства плавного пуска в случае перегрузки или внутреннего замыкания. Номинальный ток выключателя выбирается в соответствии с потребляемым током софтстартера.

Обводной контактор КМ включается при достижении двигателем максимальных оборотов (при полном открытии внутренних тиристоров УПП). Напряжение на катушку контактора поступает через специальные выходные контакты 01 и 02. На схеме показано, что питание подается на коммутацию через предохранитель FU с фазы L3. При замыкании контактов (выход полного напряжения) фаза L3 поступает на нижний по схеме вывод катушки контактора КМ. Верхний вывод может питаться фазой L1 (при напряжении катушки контактора 380В), либо может быть подключен к нейтральному проводу N (при напряжении 220В).

На катушку контактора может подаваться любое напряжение, например, 24В постоянного тока. Для этого нужен соответствующий источник питания, который будет коммутироваться через контакты 01 и 02 УПП. В таком случае в подключении к фазе L3 через предохранитель FU нет необходимости. Таблица по выбору контактора в зависимости от мощности двигателя приводится в инструкции к конкретной модели.

Нижние по схеме контакты шунтирующего контактора должны быть подключены только к соответствующим клеммам софтстартера А2, В2, С2, так как при включении режима шунтирования и выходе двигателя на полную мощность происходит контроль за током двигателя в целях его защиты от перегрузки.

Электродвигатель подключается через выходные силовые клеммы Т1, Т2, Т3 через кабель соответствующего сечения.

Управляющая часть

Рассмотрим работу управляющей части схемы подключения УПП.

Важный элемент здесь – входные клеммы цепи запуска и останова. Существует два вида схемы управления – 2-проводная и 3-проводная. Вид управления выбирается пользователем через панель управления.

Схема управления через два провода

На схеме показан ключ с фиксацией (переключатель) К. При замыкании его контактов УПП запускается, при размыкании начинается процесс плавного останова двигателя.

Контакт «Мгновенный стоп» в нормальном состоянии должен быть замкнут. Им показана аварийная цепь, например, кнопка «Аварийный останов», либо концевые выключатели открытия защитных ограждений. Как только эта цепь рвется, устройство плавного пуска аварийно останавливает двигатель.

Схема управления через три провода

В данном случае используются 3 провода, которые подключаются к контактам 8, 9, 10. При кратковременном нажатии кнопки «Пуск» (без фиксации) софтстартер начинает процесс разгона электродвигателя, при нажатии кнопки «Стоп» (также без фиксации) начинается процесс останова.

Запуск УПП также может быть произведен посредством промежуточного реле. Это целесообразно для исключения ложных срабатываний в случае длинных проводов управления или сложной помеховой обстановки.

Схема двухпроводного управления с использованием промежуточного реле КА показана ниже.

Обозначения на схеме: KS – переключатель «Пуск/Стоп» с фиксацией, КА – катушка и контакт реле. Нормально замкнутые контакты К – цепь мгновенного стопа, о которой говорилось выше.

Для удобства оператора на посту управления могут быть установлены две кнопки – «Пуск» и «Стоп». При размещении поста на значительном удалении от устройства плавного пуска может быть использовано промежуточное реле, как это показано на схеме ниже:

На рисунке представлена классическая схема включения и выключения реле с самоподхватом. Здесь также используется двухпроводная схема через контакты реле КА.

В устройстве плавного пуска Prostar PRS2 имеются и выходные клеммы (см. общую схему подключения):

  • 01-02 – выход на байпас для управления шунтирующим контактором (было рассмотрено выше).
  • 03-04 – программируемый выход. Включается при событии, которое может быть запрограмировано при настройке устройства плавного пуска.
  • 05-06 – выход ошибки. Срабатывает при любой аварии УПП.
  • 11-12 – аналоговый токовый выход для контроля тока электродвигателя.

У софтстартеров других производителей могут отличаться номера клемм, значения напряжений и пр. Уточнить нюансы подключения можно в инструкции к конкретной модели УПП.

Источник: tehprivod.su