Назначение и применение трансформаторов тока

Здравствуйте, уважаемые читатели сайта «Заметки электрика».

Мы уже с Вами много говорили про трансформаторы тока (ТТ) и сегодня я решил открыть новый раздел на сайте, посвященный полностью этой теме.

Чтобы начать изучать данный раздел, необходимо точно понимать их смысл и назначение.

Самое главное назначение трансформаторов тока — это преобразование первичного переменного тока сети до значений, безопасных для его измерений.

Вторым назначением трансформаторов тока является отделение низковольтных приборов учета и реле, подключенных ко вторичной обмотке, от первичного высокого напряжения сети. Этим обеспечивается электробезопасность оперативного и ремонтного персонала электрослужбы.

Трансформаторы тока нашли широкое применение в цепях релейной защиты. С помощью трансформаторов тока получают питание токовые цепи защиты. В случае повреждений или ненормальных режимов работы электрооборудования от ТТ зависит правильное и надежное срабатывание устройств релейной защиты.

Также трансформаторы тока применяются для питания цепей измерения и учета электроэнергии.

Пример 1

В первом примере я покажу Вам как выполнен учет электроэнергии на мощном потребителе с током нагрузки примерно 400 (А). Соответственно, при таком большом токе нагрузки подключать электросчетчик и другие приборы учета (амперметр) прямым включением в сеть НЕ ДОПУСТИМО. Они сгорят и выйдут из строя. Поэтому в этом случае необходимо применить ТТ с коэффициентом трансформации 400/5 или еще больше.

На фотографии ниже показаны низковольтные трансформаторы тока с коэффициентом трансформации 400/5. Они установлены на присоединении отдельного потребителя подстанции напряжением 0,23 (кВ) с изолированной нейтралью. Первичные их обмотки подключены последовательно к силовым выводам фазы «А» и «С» (схема неполной звезды).

А ко вторичным обмоткам ТТ подключен трехфазный счетчик электрической энергии САЗУ-ИТ и щитовой амперметр Э378.

Трехфазный индукционный счетчик САЗУ-ИТ.

Вторичные провода выполняются медным проводом сечением 2,5 кв.мм. В начале вторичные провода с трансформаторов тока идут на промежуточный клеммник, а с него уже на приборы учета. На этот же клеммник подключаются цепи напряжения.

Про все действующие схемы подключения счетчика через трансформаторы тока я уже Вам рассказывал и на этом останавливаться сейчас не буду. Вот знакомьтесь:

Конечно же, на фото я показал Вам «старенькое» электрооборудование. Но смысл от этого не меняется. Вот так выглядит электрооборудование по современнее.

В этом случае первичные обмотки трансформаторов тока подключены последовательно во всех фазах. Вторичные обмотки соединяются проводами с электросчетчиком через испытательную переходную коробку (КИП).

Пример 2

Аналогично можно сказать и про цепи релейной защиты.

Во втором примере я покажу Вам как выполняется релейная защита на потребителе напряжением 10 (кВ), с током нагрузки примерно 1000 (А). Соответственно, при таком большом токе нагрузки и высоком напряжении сети, подключать реле прямым включением в сеть НЕ ДОПУСТИМО.

В этом случае нам необходимо применить высоковольтные трансформаторы тока ТПЛ-10 с коэффициентом трансформации 1000/5 (для питания обмоток токовых реле) и измерительные трансформаторы напряжения, например, НТМИ-10, с коэффициентом 10000/100 (для питания обмоток реле напряжения и электросчетчиков).

В релейном отсеке ячейки КРУ установлены токовые реле защиты на базе РТ-40.

На двери релейного отсека размещены трехфазный счетчик СЭТ-4ТМ.03М.01 и щитовой амперметр Э30.

С помощью ТТ возможно установить приборы учета и реле, подключенные ко вторичным цепям, на значительные расстояния от контролируемых и измеряемых участков сети.

Например, амперметры всех потребителей подстанции, могут быть установлены в удобном и отапливаемом помещении (щитовой или пульте учета) для контроля их нагрузки.

Ниже я представляю Вашему вниманию список статей на тему ТТ (список будет пополняться по мере написания статей):

Источник: zametkielectrika.ru

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

>

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Источник: electriktop.ru

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

>

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: elektroshkola.ru

Сообщества › Электронные Поделки › Форум › как подключить аналоговый АС амперметр

вот такой приборчик достался мне. туплю с подключением… нужен шунт или нет? может кто понятно объяснить как его использовать? спрашивал у гугла, но че то ничего внятного не нашел…

хотелось использовать по назначению, то есть мерить амперы переменки.

нужна шунтирующая катушка
примерно так,
ну и подбираешь, сматываешь доматываешь,
ну и прибор естественно.
в яндексе ещё спроси

а полную схему подключения сможешь нарисовать? и если можно изображение предмета под названием “шунтирующая катушка”

Там немного неправильно, шунт будет между ближними шпильками.

нужна шунтирующая катушка
примерно так,
ну и подбираешь, сматываешь доматываешь,
ну и прибор естественно.
в яндексе ещё спроси

эти крайние контакты, к которым ты подрисовал красную спираль, вообще ни к чему не ведут. тупо к корпусу болтики прилеплены… по ходу крепления ))

едрать я ещё буду рассматривать где там контакты ),
принцип то понятен,
дорисуй до нижних контактов

ну вот схема, тут всё понятно, не буду же разбирать свою зарядку это долго,
на приборе стоит у меня катушка намотана просто на пальце руки
провод 1,5 мм
там где то витков 20, но приборы то разные

Только без шунта не включи, а то сгорит мгновенно.
Кстати, есть готовые шунты в магазинах радиодеталей. Сделаны из пластины с клемами под винт.

а какой нужен шунт? на лицевой стороне про шунт ниче не указано…

Только без шунта не включи, а то сгорит мгновенно.
Кстати, есть готовые шунты в магазинах радиодеталей. Сделаны из пластины с клемами под винт.

вот тут например указано, что нужен шунт

Шунт подобрать под максимальный ток амперметра, у вас 30А.
Шунт подключается в цепь последовательно нагрузке.
И уже от концов шунта тянешь проводки к своему амперметру.
В магазине скажешь что нужен под этот ампреметр.
Ну или сделай сам катушку, как подобрать провод и какой длины поищи в интернете.

Меня смущает значек переменного тока на приборе. Все данные советы по шунтам — бесполезны, если только внутри головки нет выпрямителя (что маловероятно). Вполне возможно, что головка подключается не через шунт, а через токовый трансформатр (с выпрямителем)…
Я бы попробовал так: взял бы милливольтметр повереный, батарейку дюрасел и переменный резистор на несколько десятков килоом. Крайние выводы резистора — на батарейку, а средний и минус — на головку. Ркгулятор в минимум (к контакту минуса). И начал бы добавлять напряжение — контролируя его вольтметром. если стрелка рванет в другую сторону — поменять местами подключение гловки. Когда стрелка отклонится ровно на 30 — засечь напряжение.
(я бы провел сначало испытание — без головки но с вольтметром — чтобы быть уверенным что переменник не даст скачок больше 50-100милливольт. Если что — взять другой, побольше номиналом. А если наоборот — скачок будет ближе к плюсу — взять номиналом поменьше)
Дальше все просто — Физика 6 класс, закон им.тов.Ома — рассчитать сопротивление, на котором при токе 30А падает найденное количество миллиом. U=I*R

>

прибор дёрнут из стаба, я угадал?

так вот, оттуда же надо дёрнуть и его комплектный трансформатор тока

не угадал. с алиэкспресс дернут он.

на фото, выделен штатный трансформатор тока от амперметра. Обратите внимание на его первичную обмотку: пол-витка провода 16кв.мм, выполненную монтажным жёлтым проводом.

ну допустим найду я такой транс, и как должна будет выглядеть полная схема подключения?

толстая обмотка — последовательно с нагрузкой. тонкая обмотка — к измерительному прибору

Источник: www.drive2.ru

Схемы включения электроизмерительных приборов

Классификация электроизмерительных приборов.

Электроизмерительные приборы классифицируют по следующим признакам:

  • 1) роду измеряемой величины (амперметры, вольтметры, омметры, ваттметры и т.д.);
  • 2) принципу действия (магнитоэлектрические, электромагнитные, электродинамические, тепловые, электронные и т.д.);
  • 3) роду тока (приборы постоянного, переменного, постоянного и переменного тока);
  • 4) степени точности (классы: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0).

На шкале или на лицевой панели прибора указываются назначение, род тока, положение шкалы (горизонтальное, вертикальное, под углом), пробивное напряжение изоляции, класс точности, условия эксплуатации, год выпуска, заводской номер.

Схемы включения амперметра и вольтметра.

На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.

Рис. 4.3. Измерительный трансформатор напряжения.

Схема включения вольтметра:

?/,, U2_ первичное и вторичное напряжения ТН; Wv W2 — первичная и вторичная обмотки ТН; V — вольтметр

Рис. 4.4. Измерительный трансформатор тока. Схема включения амперметра:

/р /2 — первичный и вторичный токи ТТ; Wv W2 — первичная и вторичная обмотки ТТ; А — амперметр

Для измерения тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через них проходит весь ток, протекающий в цепи (рис. 4.4). Важно, чтобы при различных электрических измерениях амперметр как можно меньше влиял на электрический режим цепи, в которую он включен. Поэтому амперметр должен иметь малое собственное сопротивление по сравнению с сопротивлением цепи.

Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.

Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.

Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.

Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Рис. 4.5. Схема включения амперметра:

а — с шунтом; 6 — через трансформатор тока; для схемы а: 1 — шунт; 2 — нагрузка;

для схемы б: 1 — измерительный трансформатор тока; 2 — нагрузка

Рис. 4.6. Схема соединения трех амперметров через два трансформатора тока:

Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л — амперметры; iA, iB, ic токи в фазах

Рис. 4.7. Схема включения вольтметра:

R — сопротивление цепи; V— вольтметр

На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.

Как видно из схемы, через первый амперметр проходит ток iA, через второй — iB, следовательно, ток в третьем амперметре, равный сумме двух линейных токов iA и iB, равен третьему линейному току: ic= iA + iB.

Для измерения напряжения на участке цепи применяют вольтметры. Вольтметр включают параллельно тем точкам цепи (М, N), напряжение между которыми надо измерить (рис. 4.7).

Вольтметр не должен изменять напряжение на измеряемом участке цепи, по этой причине ток, проходящий через вольтметр, должен быть много меньше, чем ток на измеряемом участке.

Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Любой вольтметр рассчитан на определенное предельное напряжение, но с помощью подключения последовательно с вольтметром добавочного сопротивления /?доб можно измерять большие напряжения (рис. 4.8, б).

Рис. 4.8. Схемы включения амперметра и вольтметра в электрическую цепь:

а — без расширения пределов измерения; б — с расширением пределов измерения;

Яш — сопротивление шунта; /?доб — добавочное сопротивление

На рисунке 4.9 приведена схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения.

Рис. 4.9. Схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения: V— вольтметр; А — амперметр; W— ваттметр

На рисунке 4.10 приведена схема включения амперметров и вольтметров в трехфазную цепь. Как видно из схемы, амперметры включены через измерительные ТТ, а вольтметры —через измерительные ТН. Такие схемы включения измерительных приборов характерны для высоковольтных сетей напряжением 6 (10) кВ и выше.

Рис. 4.10. Включение амперметров и вольтметров в трехфазную цепь с помощью измерительных трансформаторов тока и напряжения

Источник: bstudy.net