Электрические схемы для начинающих электриков

Как читать электронные схемы?

Учимся читать принципиальные электрические схемы

О том, как читать принципиальные схемы я уже рассказывал в первой части. Теперь хотелось бы раскрыть данную тему более полно, чтобы даже у новичка в электронике не возникало вопросов. Итак, поехали. Начнём с электрических соединений.

Не секрет, что в схеме какая-либо радиодеталь, например микросхема может соединяться огромным количеством проводников с другими элементами схемы. Для того чтобы высвободить место на принципиальной схеме и убрать “повторяющиеся соединительные линии” их объединяют в своеобразный “виртуальный” жгут – обозначают групповую линию связи. На схемах групповая линия связи обозначается следующим образом.

Вот взгляните на пример.

Как видим, такая групповая линия имеет большую толщину, чем другие проводники в схеме.

Чтобы не запутаться, куда какие проводники идут, их нумеруют.

На рисунке я отметил соединительный провод под номером 8. Он соединяет 30 вывод микросхемы DD2 и 8 контакт разъёма XP5. Кроме этого, обратите внимание, куда идёт 4 провод. У разъёма XP5 он соединяется не со 2 контактом разъёма, а с 1, поэтому и указан с правой стороны соединительного проводника. Ко 2-му же контакту разъёма XP5 подключается 5 проводник, который идёт от 33 вывода микросхемы DD2. Отмечу, что соединительные проводники под разными номерами электрически между собой не связаны, и на реальной печатной плате могут быть разнесены по разным частям платы.

Электронная начинка многих приборов состоит из блоков. А, следовательно, для их соединения применяются разъёмные соединения. Вот так на схемах обозначаются разъёмные соединения.

XP1 – это вилка (он же “Папа”), XS1 – это розетка (она же “Мама”). Всё вместе это “Папа-Мама” или разъём X1 (X2).

Также в электронных устройствах могут быть механически связанные элементы. Поясню, о чём идёт речь.

Например, есть переменные резисторы, в которые встроен выключатель. Об одном из таких я рассказывал в статье про переменные резисторы. Вот так они обозначаются на принципиальной схеме. Где SA1 – выключатель, а R1 – переменный резистор. Пунктирная линия указывает на механическую связь этих элементов.

Ранее такие переменные резисторы очень часто применялись в портативных радиоприёмниках. При повороте ручки регулятора громкости (нашего переменного резистора) сначала замыкались контакты встроенного выключателя. Таким образом, мы включали приёмник и сразу той же ручкой регулировали громкость. Отмечу, что электрического контакта переменный резистор и выключатель не имеют. Они лишь связаны механически.

Такая же ситуация обстоит и с электромагнитными реле. Сама обмотка реле и его контакты не имеют электрического соединения, но механически они связаны. Подаём ток на обмотку реле – контакты замыкаются или размыкаются.

Так как управляющая часть (обмотка реле) и исполнительная (контакты реле) могут быть разнесены на принципиальной схеме, то их связь обозначают пунктирной линией. Иногда пунктирную линию вообще не рисуют, а у контактов просто указывают принадлежность к реле (K1.1) и номер контактной группы (К1.1) и (К1.2).

Ещё довольно наглядный пример – это регулятор громкости стереоусилителя. Для регулировки громкости требуется два переменных резистора. Но регулировать громкость в каждом канале по отдельности нецелесообразно. Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Вот пример из реальной схемы.

На рисунке я выделил красным две параллельные линии – именно они указывают на механическую связь этих резисторов, а именно на то, что у них один общий регулирующий вал. Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.1 и R4.2. Где R4 – это резистор и его порядковый номер в схеме, а 1 и 2 указывают на секции этого сдвоенного резистора.

Также механическая связь двух и более переменных резисторов может указываться пунктирной линией, а не двумя сплошными.

Отмечу, что электрически эти переменные резисторы не имеют контакта между собой. Их выводы могут быть соединены только в схеме.

Не секрет, что многие узлы радиоаппаратуры чувствительны к воздействию внешних или “соседствующих” электромагнитных полей. Особенно это актуально в приёмопередающей аппаратуре. Чтобы защитить такие узлы от воздействия нежелательных электромагнитных воздействий их помещают в экран, экранируют. Как правило, экран соединяют с общим проводом схемы. На схемах это отображается вот таким образом.

Здесь экранируется контур 1T1, а сам экран изображается штрих-пунктирной линией, который соединён с общим проводом. Экранирующим материалом может быть алюминий, металлический корпус, фольга, медная пластина и т.д.

А вот таким образом обозначают экранированные линии связи. На рисунке в правом нижнем углу показана группа из трёх экранированных проводников.

Похожим образом обозначается и коаксиальный кабель. Вот взгляните на его обозначение.

В реальности экранированый провод (коаксиальный) представляет собой проводник в изоляции, который снаружи покрыт или обмотан экраном из проводящего материала. Это может быть медная оплётка или покрытие из фольги. Экран, как правило, соединяют с общим проводом и тем самым отводят электромагнитные помехи и наводки.

Бывают нередкие случаи, когда в электронном устройстве применяются абсолютно одинаковые элементы и загромождать ими принципиальную схему нецелесообразно. Вот, взгляните на такой пример.

Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 – R15. Всего 8 штук. Каждый из них соединяет соответствующий вывод микросхемы и четырёхразрядный семисегментный индикатор. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.

Ещё один пример. Схема кроссовера (фильтра) для акустической колонки. Обратите внимание на то, как вместо трёх одинаковых конденсаторов C1 – C3 на схеме указан лишь один конденсатор, а рядом отмечено количество этих конденсаторов. Как видно из схемы, данные конденсаторы необходимо соединить параллельно, чтобы получить общую ёмкость 3 мкФ.

Аналогично и с конденсаторами C6 – C15 (10 мкФ) и C16 – C18 (11,7 мкФ). Их необходимо соединить параллельно и установить на место обозначенных конденсаторов.

Следует отметить, что правила обозначения радиодеталей и элементов на схемах в зарубежной документации несколько иные. Но, человеку, получившему хотя бы базовые знания по данной теме разобраться в них будет гораздо проще.

Источник: go-radio.ru

Электротехника для начинающих

Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Читайте также:  Схемы светодиодных ламп

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Закон Ома

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Видео

Источник: amperof.ru

Как читать электрические схемы – графические, буквенные и цифровые обозначения

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО. Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Резистор

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

Читайте также:  Схема подключения реверсивного двигателя

Динамик

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Конденсатор

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Транзистор

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента.

Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает).

Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Источник: onlineelektrik.ru

Как читать электрические схемы. Виды электрических схем

Здравствуйте, уважаемые читатели сайта sesaga.ru. Любое радиотехническое или электротехническое устройство состоит из определенного количества различных электро- и радиоэлементов (радиодеталей). Возьмем, к примеру, самый обычный утюг: в нем есть регулятор температуры, лампочка, нагревательный элемент, предохранитель, провода и штепсельная вилка.

Утюг представляет собой электротехническое устройство, собранное из специального набора радиоэлементов, обладающих определенными электрическими свойствами, где работа утюга основана на взаимодействии этих элементов между собой.

Для осуществления взаимодействия радиоэлементы (радиодетали) соединяются друг с другом электрически, а в некоторых случаях их размещают на небольшом расстоянии друг от друга и взаимодействие происходит путем образованной между ними индуктивной или емкостной связи.

Самый простой способ разобраться в устройстве утюга — это сделать его точную фотографию или рисунок. А чтобы представление было исчерпывающим можно сделать несколько фотографий внешнего вида крупным планом с разных ракурсов, и несколько фотографий внутреннего устройства.

Однако, как Вы заметили, этот способ представления об устройстве утюга нам вообще ничего не дает, так как на фотографиях видна только общая картинка о деталях утюга. А из каких радиоэлементов он состоит, какое их назначение, что они представляют, какую функцию в работе утюга выполняют и как связаны между собой электрически нам не понятно.

Вот поэтому, чтобы иметь представление, из каких радиоэлементов состоят подобные электрические устройства, разработали условные графические обозначения радиодеталей. А чтобы понимать, из каких деталей составлено устройство, как эти детали взаимодействуют друг с другом и какие при этом протекают процессы, были разработаны специальные электрические схемы.

Электрическая схема представляет собой чертеж, содержащий в виде условных изображений или обозначений составные части (радиоэлементы) электрического устройства и соединения (связи) между ними. То есть электрическая схема показывает, как осуществляется соединение радиоэлементов между собой.

Радиоэлементами электрических устройств могут являться резисторы, лампы, конденсаторы, микросхемы, транзисторы, диоды, выключатели, кнопки, пускатели и т.д., а соединения и связи между ними могут быть выполнены монтажным проводом, кабелем, разъемным соединением, дорожками печатных плат и т.д.

Электрические схемы должны быть понятны всем кому приходится с ними работать, и потому их выполняют в стандартных условных обозначениях и применяют по определенной системе, установленной государственными стандартами: ГОСТ 2.701-2008; ГОСТ 2.710-81; ГОСТ 2.721-74; ГОСТ 2.728-74; ГОСТ 2.730-73.

Различают три основных вида схем: структурные, принципиальные электрические, схемы электрических соединений (монтажные).

Структурная схема (функциональная) разрабатывается на первых этапах проектирования и предназначена для общего ознакомления с принципом работы устройства. На схеме прямоугольниками, треугольниками или символами изображаются основные узлы или блоки устройства, которые между собой связываются линиями со стрелками, указывающими направление и последовательность соединений друг с другом.

Принципиальная электрическая схема определяет, из каких радиоэлементов (радиодеталей) состоит электро- или радиотехническое устройство, как эти радиодетали связаны между собой электрически, и как они взаимодействуют друг с другом. На схеме детали устройства и порядок их соединения изображают условными знаками, символизирующими эти детали. И хотя принципиальная схема не дает представления о габаритах устройства и размещении его деталей на монтажных платах, щитах, панелях и т.п., зато она позволяет детально разобраться в его принципе работы.

Схема электрических соединений или ее еще называют монтажная схема, представляет собой упрощенный конструктивный чертеж, изображающий электрическое устройство в одной или нескольких проекциях, на котором показываются электрические соединения деталей между собой. На схеме изображаются все радиоэлементы, входящие в состав устройства, их точное расположение, способы соединения (провода, кабели, жгуты), места присоединений, а также входные и выходные цепи (соединители, зажимы, платы, разъемы и т.п.). Изображения деталей на схемах даются в виде прямоугольников, условных графических обозначений, или в виде упрощенных рисунков реальных деталей.

Читайте также:  Схема подключения пускателя

Разница между структурной, принципиальной и монтажной схемой будет показана дальше на конкретных примерах, но главный упор мы будем делать на принципиальные электрические схемы.

Если внимательно рассмотреть принципиальную схему любого электрического устройства, то можно заметить, что условные обозначения некоторых радиодеталей часто повторяются. Подобно тому, как слово, фраза или предложение состоят из чередующихся в определенном порядке букв собранных в слова, так и электрическая схема состоит из чередующихся в определенном порядке отдельных условных графических обозначений радиоэлементов и их групп.

Условные графические обозначения радиоэлементов образуются из простейших геометрических фигур: квадратов, прямоугольников, треугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по системе, предусмотренной стандартом ЕСКД (единая система конструкторской документации), дает возможность легко изобразить радиодетали, приборы, электрические машины, линии электрической связи, виды соединений, род тока, способы измерения параметров и т.п.

В качестве графического обозначения радиоэлементов взято их предельно упрощенное изображение, в котором либо сохранены их наиболее общие и характерные черты, либо подчеркнут их основной принцип действия.

Например. Обычный резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. Поэтому на электрических схемах резистор так и обозначают в виде прямоугольника, символизирующего форму трубки.

Благодаря такому принципу построения запоминание условных графических обозначений не представляет особого труда, а составленная схема получается удобной для чтения. И для того, чтобы научиться читать электрические схемы, прежде всего, нужно изучить условные обозначения, так сказать «азбуку» электрических схем.

На этом мы закончим. В следующей части разберем три основных вида электрических схем, с которыми Вам часто придется сталкиваться при разработке или повторении радиоэлектронной или электротехнической аппаратуры.
Удачи!

Источник: sesaga.ru

Самоучитель электрика. Обучиться, научиться электромонтажу. Осветительная бытовая электрическая сеть, электричество своими руками. Схема электропроводки, проводки.

Все, что нужно знать электрику – самоучке. Самоучитель. Особенности бытовой осветительной электрической сети. Самостоятельное обучение электромонтажу. (10+)

Самоучитель электрика – Основные знания и навыки для выполнения электротехнических и электромонтажных работ

Наверняка я что-то упустил. Могут быть разные частные вопросы по электрике, которые я не осветил. Обязательно пишите вопросы в обсуждение статьи. Я, если смогу, на них отвечу.

Техника безопасности

Если Вы самостоятельно никогда не выполняли электромонтажные работы, то не следует думать, что прочитав этот материал, Вы сможете все сделать правильно, безопасно для себя и будущих пользователей. Статья позволит понять, как устроена бытовая осветительная сеть, уяснить основные принципы ее монтажа. Первый раз электромонтажные работы нужно проводить под наблюдением опытного специалиста. В любом случае, вне зависимости от того, имеете ли Вы официальный допуск, Вы берете на себя ответственность за жизнь, здоровье и безопасность себя и окружающих.

Никогда не работайте с высоким напряжением в одиночку. Всегда должен рядом быть человек, который в критической ситуации сможет обесточить систему, вызвать экстренные службы и оказать первую помощь.

Не следует выполнять работы под напряжением. Это развлечение для опытных профессионалов. Обесточьте сеть, с которой будете работать, убедитесь, что никто не сможет случайно включить электричество, когда Вы будете заниматься монтажом.

Не надейтесь на то, что до Вас проводка была выполнена правильно. Обзаведитесь датчиком (индикатором) фазы. Это такое устройство, похожее на отвертку или шило. У него есть щуп. Если щуп прикасается к проводу, находящемуся под напряжением, то загорается индикатор. Убедитесь, что Вы умеете правильно пользоваться этим датчиком. Есть тонкости. Некоторые датчики правильно работают только если пальцем прижимать специальный контакт на ручке. Перед тем, как начинать работу, с помощью индикатора фазы убедитесь, что проводка обесточена. Я не раз встречал ошибочно выполненные варианты проводки, когда автомат на входе разрывает только один провод, не обеспечивая полное обесточивание сети. Такая ошибка очень опасна, так как, отключив автомат, Вы предполагаете, что сеть обесточена, а это не так. Датчик фазы сразу предупредит Вас об опасности.

Главные неисправности электротехники

Мастера говорят, что в электротехнике есть всего два вида неисправностей. Нет нужного надежного контакта и есть ненужный. Действительно, в электромонтажном деле не бывает случаев, когда две точки сети должны быть связаны определенным сопротивлением. Они либо должны быть соединены, либо не соединены.

Схемы электрических соединений

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2), УЗО (A3) и электрический счетчик (A4) заведено сетевое напряжение осветительной сети (O1). Далее это напряжение разводится на два контура – осветительный и силовой. Оба контура имеют отдельные автоматы (A4 – осветительный контур, A5 – силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1LN) и две розетки (S1, S2) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3SN).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик – измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я – не специалист в этих схемах. Информацию о них поищите в других источниках.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Задать вопрос электрику онлайн Здесь Вы можете спросить меня про электропроводку, электрику и другие тонкости электромонтажа. Читать дальше.

Почему водопровод бьет током? Что делать.
Почему может бить током от водопровода, водопроводных смесителей? Причины электр.

Каркас комода, тумбы. Обшивка каркаса ДСП. Окраска. Ящики.
Собираем комод. Делаем каркас, обшиваем его ДСП, заделываем кромку, окрашиваем. .

Как отфильтровать, удалить железо. Фильтруем воду для загородного дома.
Как сделать фильтр для обезжелезивания (фильтрации) своими руками? Очистим, обез.

Источник: hw4.ru