Эл схема подключения

Схемы по электрике. Виды и типы. Некоторые обозначения

Во время работ по электротехнике человек может столкнуться с обозначениями элементов, которые условно обозначены на электромонтажных схемах. Разнообразия схемы по электрике очень широки. Они имеют разные функции и классификацию. Но все графические обозначения в условном виде приводятся к одним формам, и для всех схем элементы соответствуют друг другу.

Электромонтажная схема – это документ, в котором обозначены связи составных элементов разных устройств, потребляющих электроэнергию, между собой по определенным стандартным правилам. Такое изображение в виде чертежа призвано научить специалистов по электрическому монтажу, чтобы они поняли из схемы принцип действия устройства, и из каких составных частей и элементов она собрана.

Главное предназначение электромонтажной схемы – оказать помощь в монтаже электроустройств и приборов, простом и легком обнаружении неисправности в электрической цепи. Далее разберемся в видах и типах электромонтажных схем, выясним их свойства и характеристики каждого типа.

Схемы по электрике: классификация

Все электрические схемы, как документы, разделяются на виды и типы. По соответствующим стандартам можно найти разделение этих документов по видам схем и типам. Разберем их подробную классификацию.

Виды электромонтажных схем следующие:
  • Электрические.
  • Газовые.
  • Гидравлические.
  • Энергетические.
  • Деления.
  • Пневматические.
  • Кинематические.
  • Комбинированные.
  • Вакуумные.
  • Оптические.
Основные типы:
  • Структурные.
  • Монтажные.
  • Объединенные.
  • Расположения.
  • Общие.
  • Функциональные.
  • Принципиальные.
  • Подключения.

Рассматривая схемы по электрике, перечисленные обозначения, по названию электросхемы определяют тип и вид.

Обозначения в электросхемах

В современный период в электромонтажных работах используются как отечественные, так и импортные элементы. Зарубежные детали можно представить широким ассортиментом. На схемах и чертежах они также обозначаются условно. Описывается не только размер параметров, но и список элементов, входящих в устройство, их взаимосвязь.

Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит.

Принципиальная схема

Такой тип используется в распределительных сетях. Он обеспечивает полное раскрытие работы электрооборудования. На чертеже обязательно обозначают функциональные узлы, их связь. Схема имеет два вида: однолинейная, полная. На однолинейной схеме изображены первичные сети (силовые). Вот ее пример:

Полный вариант схемы по электрике изображается в элементном или развернутом виде. Если устройство простое, и на чертеже входят все пояснения, то хватит развернутого плана. При сложном устройстве с цепью управления, измерения и т. д., оптимальным решением будет изобразить все узлы на отдельных листах, во избежание путаницы.

Бывает также принципиальная электросхема, на которой изображена выкопировка плана с обозначением отдельного узла, его состав и работа.

Монтажная схема

Такие схемы по электрике применяются для разъяснения монтажа какой-либо проводки. На них можно изобразить точное положение элементов, их соединение, характеристики установок. На схеме проводки квартиры будет видно размещение розеток, светильников и т.д.

Эта схема руководит электромонтажными работами, дает понимание всех подключений. Для монтажа бытовых устройств такая схема лучше подходит для работы.

Объединенная схема

Этот тип схемы включает в себя разные виды и типы документов. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности. Чаще объединенные схемы применяют на предприятиях промышленности. Для домашнего применения она вряд ли имеет смысл.

Изучив условные обозначения, подготовив необходимую документацию, не трудно разобраться в работе любой электроустановке.

Порядок сборки по электрической схеме
Самым сложным делом для электрика является понимание взаимодействия элементов в схеме. Нужно знать, как читать и собирать схему. Сборка предполагает определенные правила:
  • Во время сборки необходимо руководствоваться одним направлением, например, по часовой стрелке.
  • Лучше для начала разделить схему на части, если много элементов и схема сложная.
  • Начинают сборку от фазы.
  • При каждом выполненном шаге по сборке нужно предположить, что будет происходить, если в данный момент подать напряжение.

После окончания сборки обязательно должна образоваться замкнутая цепь. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя.

Сначала определим порядок работы люстры. При включении 1-й клавиши должна загораться одна лампочка, если включить 2-ю клавишу, то другие две. По схеме на выключатель и люстру идут по 3 провода. От сети идут два провода, фаза и ноль.

Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль. Провод присоединяем к общей клемме выключателя. От него пойдут 2 провода на 2 цепи. Один из проводов соединим с патроном лампы. От патрона выводим второй проводник, соединяем с нулем. Одна цепь готова. Для проверки щелкаем первой клавишей выключателя, лампа горит.

2-й провод от выключателя подключаем к патрону другой лампы. От патрона провод соединяем с нулем. Если по очереди щелкать клавишами выключателя, то будут светиться разные лампы.

Теперь подключим третью лампу. Соединяем ее параллельно к любой лампе. В люстре один провод стал общим. Его делают отличительным по цвету. Если у вас провода все одинаковые по цвету, то во избежание путаницы необходимо при монтаже пользоваться индикатором. Для подключения люстры обычно не требуется особого труда, так как эта схема не особо сложная.

Источник: electrosam.ru

Схемы и способы подключения электродвигателей

Одним из ключевых моментов, обеспечивающих нормальную работу привода, является правильная схема подключения электродвигателя – ключевого звена цепи. Соблюдение всех соединений гарантирует отсутствие нештатных ситуаций, повреждения обмоток, долговечную работу и прогнозируемую агрегата. Важно понимать, что существуют общепринятые решения для включения эл. моторов одно- и трехфазных (220 и 380 В), с потреблением постоянного/переменного тока, с пускателем и защитой теплового реле, а также специфические схемы, например, моторы с фазным ротором, или П 41, работающие на 110/220 В, выходящие за привычные рамки.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Читайте также:  Схема эпра для люминесцентных ламп

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Источник: electricvdele.ru

Всё об энергетике

Электрические схемы. Типы. Правила выполнения

Типы электрических схем, их назначение и правила выполнения в РФ регламентированы ЕСКД, а именно ГОСТ 2.701, 2.702, 2.709, 2.710, 2.721, 2.755. Далее в статье рассмотрены типы электрических схем, их назначение и правила выполнения.

Типы электрических схем

Схема – это документ, на котором показаны в виде условных изображений или обозначений составные части изделия и связи между ними [1, п.4.1] . Электрические схемы в зависимости от их основного назначения подразделяются на типы [1, таб.2] :

  • Схема структурная;
  • Схема функциональная;
  • Схема принципиальная (полная);
  • Схема соединений (монтажная);
  • Схема подключения;
  • Схема общая;
  • Схема расположения;
  • Схема объединённая.

Примечание – в скобках указаны названия для электрических схем энергетических сооружений.

Назначение типов электрических схем

Электрические схемы разрабатываются для целей проектирования, изготовления, эксплуатации и ремонта изделия. Для упрощения и ускорения работы над изделием для него разрабатывается несколько типов электрических схем, каждая из которых имеет своё назначение.

Схема структурная

Документ, определяющий основные функциональные части изделия, их назначение и взаимосвязи [1, таб.2] . Основная цель составления структурной схемы – ознакомительная. Глядя на неё можно не углубляясь в подробности технических решений быстро определить основные функциональные части изделия , понять их логику работы и назначение изделия в целом.

Рисунок 1 – Схема структурная цифрового силового контроллера Si8250

Схема функциональная

Документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия или изделия в целом [1, таб.2] . Зачастую в составлении функциональной схемы нет необходимости – достаточно структурной схемы. Функциональная схема, а точнее схемы составляются тогда, когда изделие состоит из набора более простых изделий для каждого из которых и составляется структурная схема. Можно сказать что функциональная схема это структурная схема для отдельной части изделия.

Схема принципиальная (полная)

Документ, определяющий полный состав элементов и взаимосвязи между ними и, как правило, дающий полное (детальное) представления о принципах работы изделия [1, таб.2] . Принципиальная схема, кроме того что даёт полное представление о принципах работы изделия , служит ещё одной цели – позволяет произвести расчёт режимов работы изделия.

Рисунок 2 – Схема принципиальная усилителя «Ланзар»

Схема соединений (монтажная)

Документ, показывающий соединения составных частей изделия и определяющий провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения, а также места их присоединений и ввода (разъёмы, платы, зажимы и т.п.) [1, таб.2] . Монтажные схемы отражают фактическое положение всех составных частей изделия и их соединения, поэтому наиболее актуальными при сборке/монтаже изделия. Кроме того монтажная схема важна для оценки влияния составных частей изделия друг на друга, температурного режима изделия и оценки стабильности его работы в целом.

Рисунок 3 – Схема монтажная STP-30

Схема подключения

Документ, показывающий внешние подключения изделия [1, таб.2] . Используется при подключении изделия.

Рисунок 4 – Схема подключения АЦП ADC0804

Схема общая

Документ, определяющий составные части комплекса и соединения их между собой на месте эксплуатации [1, таб.2] . Общая схема актуальна для сложных изделий, включающих в себя большое количество других изделий.

Рисунок 5 – Схема общая

Схема расположения

Документ, определяющий относительное расположение составных частей изделия (установки), а при необходимости, также жгутов (проводов, кабелей), трубопроводов, световодов и т.п. [1, таб.2] . Так же как и общая, схема расположения актуальна для сложных изделий, включающих в себя большое количество других изделий. В ней помимо самого изделия и его функциональных частей может быть отражена конструкция, помещение или местность , на которых это изделие или его функциональные части будут расположены [2, п.5.7.1]

Рисунок 6 – Схема расположения оборудования силового шкафа

Схема объединённая

Документ, содержащий элементы различных типов схем одного вида [1, таб.2] .

– При разработке изделия следует помнить, что количество типов схем на изделие должно быть минимальным, но в совокупности они должны содержать сведения в объёме, достаточном для проектирования, изготовления, эксплуатации и ремонта изделия [1, п. 5.1.1] . Иначе говоря, не требуется выполнение всего приведённого выше набора схем.

– При разработке изделия вместо нескольких схем разных типов допускается выполнить для них объединённую схему. Например на монтажной схеме изделия показать его внешние подключения [1, с. 3] .

Читайте также:  Условное обозначение выключателя на схеме

– Если из-за особенностей изделия недостаточно перечисленных выше типов схем, то допускается разрабатывать схемы иных типов [1, с. 4] .

– Схема может быть выполнена однолинейной и многолинейной. При многолинейном исполнении каждую цепь и включенные в неё элементы изображают отдельно, а при однолинейном исполнении – одной цепью. Однолинейное исполнение уместно, когда изображаемые цепи выполняют одну и ту же функцию и достаточно рассмотреть одну из них [2, п. 5.2.8-10] .

– Рисунки 1-6 приведенные выше не являются эталоном выполнения соответствующих типов схем, они показывают лишь принцип построения этих схем.

Правила выполнения электрических схем

Правила выполнения электрических схем регламентированы в [1] – [6], ниже приведены лишь основные моменты.

Общие требования к электрическим схемам

Номенклатура (текст основной надписи) схем на изделие определяется в зависимости от самого изделия. Следует стремится к минимальному количеству типов схем [1, п.5.1.1] .

Схемы выполняются на форматах установленных в [7] и [8] .

Электрические схемы выполняются без соблюдения масштаба и без учёта действительного расположения составных частей. Исключение – схема соединений (монтажная) [1, п.5.3.1] .

Для обозначения элементов электрических схем (резисторов, конденсаторов, транзисторов и т.п.) применяют условные графические обозначения (далее УГО) установленные в [3] – [6] . Если перечня УГО приведенного в [3] – [6] недостаточно, допускается применять нестандартизированные УГО. При этом на схеме нужно привести пояснения [1, п.5.4.1] .

Линии взаимосвязи следует выполнять толщиной от 0,2 до 1,0 мм. Рекомендуется толщина линий 0.3 ÷ 0,4 мм [1, п.5.5.1] .

Допускается помещать на схемы технические данные изделия в виде диаграмм, таблиц или текста. При этом содержание текста и таблиц должно быть кратким и точным, а диаграмм, кроме того, понятным. Тестовые данные как правило указывают внутри УГО либо сверху/справа от него, а таблицы и диаграммы располагают на свободном поле схемы [1, п.5.6.1-4] .

Требования к структурным и функциональным схемам

На структурной (функциональной) схеме изображают все основные функциональные группы изделия и связи между ними. Основное требование – схема должна обеспечивать наилучшее представление о последовательности взаимодействия её функциональных групп [2, п.5.1.1,3; 5.2.1,3] .

Требования к принципиальным схемам

В принципиальной схеме необходимо отразить все электрические элементы изделия и взаимосвязи между ними. Такие схемы выполняются для отключенного положения изделия. Всем элементам принципиальной схемы должно быть присвоено своё обозначение (например: R, L и т.п.) и порядковый номер (например: L1, L2, L3 и т.п.). Кроме того, рекомендуется указывать параметры входных и выходных цепей [2, п.5.3.1,3,7-10,23] .

Требования к схемам соединений (монтажным)

На схемах соединений изображают все устройства и элементы изделия, их входные и выходные элементы и соединения между ними. Устройства и элементы на схеме лучше изображать в виде упрощенных внешних очертаний, а их положение должно примерно соответствовать действительному положению в изделии. Также на схеме соединений указываются обозначения, присвоенные элементам на принципиальной схеме. Кроме этого, указываются номера проводов жил и кабелей [2, п.5.4.1-3,5,20] .

Требования к схемам подключения

На схеме подключения отражают изделие (в виде упрощенных внешних очертаний или прямоугольника) и его входные и выходные контакты с подводимыми к ним концами проводов и кабелей других изделий. Для всех элементов схемы следует указывать его буквенно-цифровое обозначение [2, п.5.5.1-6] .

Требования к общим схемам

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода и кабели их соединяющие. Общая схема по своей сути похожа на схему подключения [2, п.5.6.1] .

Требования к схемам расположения

На схеме расположения изображают составные части изделия, а при необходимости конструкцию, помещение или местность, на которых эти составные части будут расположены. Составные части изделия изображают в виде упрощенных внешних очертаний, а их расположение должно примерно соответствовать действительному размещению [2, п.5.7.1,2,4] .

Требования к объединённым схемам

Для схем этого типа нет отдельных требований, поскольку они складываются из требований к отдельному типу схемы, входящей в состав объединённой.

Источник: allofenergy.ru

Схемы подключения выключателей освещения

Вступление

Выключатели освещения — коммутационные электротехнические устройства, предназначенные для управления освещением. В этой статье смотрим и разбираем схемы подключения выключателей освещения жилых помещений, квартир и частных домов.

Простые схемы подключения выключателей освещения

Данные схемы обеспечивают включение/выключение, бытовых осветительных приборов с рабочим напряжением 230÷250 В и токами до 10 Ампер.

Замечу, что данные параметры работы выключателя должны быть указаны на его корпусе в нормативной маркировке, о которой я писал в прошлой статье: Типы выключателей освещения бытового назначения.

Говоря несколько проще, эти простые схемы, работают в любой квартире и доме, для управления освещением комнат. Академическое название этих схем — схемы управления освещением из одного места.

Два важных момента:

  • На выключателе нужно прерывать фазную цепь электропитания;
  • Собирать схемы нужно только при отключенном электропитании (техника безопасности).

Схема управления освещением одноламповой люстры, светильника, бра

Данную схему можно назвать простейшей. Чтобы включать/ выключать светильник достаточно установить выключатель на фазный провод электропитания светильника.

Выключатель одноклавишный

Выключатель с подсветкой

Всем знакомы удобные выключатели с подсветкой. У некоторых производителей подсветка выключателей устанавливается отдельно (проводок с диодом). Подключается подсветка следующим образом.

Однако, на практике, такую принципиальную схему установки одноклавишного выключателя получиться реализовать не везде. Например, для управления работой бра с выключателем на кабеле питания.

Чаще выключатель удален от светильника и подключения выключателя в схему освещения делается через распределительную коробку.

Монтаж проводки освещения

Фактически, монтаж проводки освещения, скажем люстры, делается так:

Три кабеля электропроводки, от светильника, от выключателя и от светильника заводятся в распределительную коробку. В ней производится соединение проводов данной цепи по выбранной схеме управления освещением. По этой же схеме, выбирается количество жил кабелей идущих к выключателю и светильнику. Вполне оправданно называть следующую схему монтажной.

Для реализации такой схемы используются двухжильные кабели, в быту, сечением 1,5 мм 2 по меди.

Схема управления освещением люстры, светильника, бра на две лампы

Данная схема позволит управлять освещением светильника на две лампы. Для реализации такой схемы используются двухжильный кабель электропитания (для бытовой проводки освещения кабель питания везде будет двухжильный) и трехжильные кабели от выключателя и к светильнику.

Схема 1+1 (выключатель двухклавишный)

На данной схеме двухклавишный выключатель позволяет управлять двухламповым светильником, включая каждую лампу отдельно или обе лампы вместе.

Схема выключателя две клавиши с подсветкой

Примечание: Обращу внимание, что использование слова лампа весьма условное. Схема не измениться, если слово лампа заменить на группу светильников, соединенных параллельно. Например, в квартире это может быть группа точечных светильников в потолке.

Схема управления трехрожковой люстры

Выключатель двухклавишный (2+1)

Данная схема работает на включение/выключение трехрожковой люстры с возможностью включения 1 или 2 или 3 ламп.

Выключатель трехклавишный (1+1+1)

Трехклавишный позволяет управлять не только трехрожковой люстрой, но и тремя группами светильников. При этом обеспечивается возможность включения каждой группы светильников по отдельности и в любой комбинации.

Читайте также:  Tn c схема

Примечание: Обращу внимание, что группа светильников отличается от группы освещения.

Схема подключения выключателя к люминесцентному светильнику

В статье Схемы подключения люминесцентных ламп я показывал схемы подключения люминесцентных светильников. Повторяться не буду. Здесь только замечу, что данные условные схемы подключения выключателей освещения, относятся к любым типам светильников. Меняются только типы выключателей.

Схема управления освещением светодиодной подсветки

В схемах управления освещением светодиодной подсветки, участвуют блоки питания светодиодных лент. В остальном, принципиальные схемы управления освещением такие же, как для ламп накаливания. Например, такая схема:

Об управлении освещением с двух точек

Представьте длинный коридор, например, в офисном здании или лучше представьте частный двухэтажный дом. Вы заходите на 1-й этаж дома и включаете свет. Свет помогает ориентироваться на этаже и части лестницы. Поднимаетесь на 2-й этаж и теперь вам нужно включить свет на этом этаже и одновременно выключить свет на первом этаже.

Это и есть пример управления освещением с двух мест. При этом схема должна работать и в обратном направлении. То есть, находясь на втором этаже, вы включаете свет первого этажа, а уходя из дома, выключаете свет второго этажа, находясь на первом и наоборот.

В ситуации с коридором, эта схема обеспечит следующий вариант управления освещением. Зашли в коридор — включил свет, прошли длинный коридор — выключили свет. Работает схема в двух направлениях.

Стоит отметить, что для сборки такой схемы вам, формально, понадобятся не простые выключатели, а выключатели проходные. Почему формально? Потому что из любого двухклавишного выключателя можно сделать переключатель.

Примечание: не путайте проходной выключатель с переключателем, он же выключатель перекидной. О последнем ниже.

то же с подсветкой

Схема управления освещением с трех мест

Идя дальше, можно реализовать схему управления освещением с трех мест. В этом варианте нам понадобится не проходной выключатель (одна клавиша), а выключатель перекидной (переключатель), который с большой натяжкой назвать выключатель проходной двухклавишный.

На схеме 2 и 3 выключатель перекидной расположен посередине. Это условность и фактически схему можно собрать, при любом расположении выключателей (схема 1). Схема собирается в распределительной коробке.

схема 1 схема 2 схема 3

Для реализации такой схемы, в «приличном обществе» нужны четырех жильные кабели. Также обратите внимание, сто в схеме 2 используется двухклавишный проходной выключатель, а в схеме 3 проходной переключатель. Об этом подробно в следующей статье.

Монтажные схемы освещения

Выше я говорил о разнице монтажных и принципиальных схем освещения. Также говорил, что вся сборка схемы освещения производится в распределительной коробке. Вот несколько таких сборок.

Другие схемы оптом

Вывод

Схемы подключения выключателей освещения НЕ ограничиваются приведенными выше. Это скорее база, на которой можно придумать более сложные схемы управления электропитанием не только освещения, но и розеток, вентиляторов и т.п.

Источник: ehto.ru

Схема подключения однофазного электросчетчика

Представленная здесь схема подключения однофазного электросчетчика универсальна и одинаково подходит для установки одно- или двухтарифного счетчика электроэнергии, не важно электронного или индукционного (механического) он типа, вне зависимости от марки и фирмы производителя, будь то Нева, Энергомера, Меркурий и т.п.

Практически любой однофазный счетчик имеет четыре клеммы для подключения проводов . В зависимости от марки и функционала конкретного электрического счетчика, клеммы могут быть промаркированные по-разному, но при этом порядок подключения проводов к ним один. Поэтому для удобства и универсальности мы на схеме пронумеруем их по порядку, слева на право от 1 до 4.

Вводной электрический кабель , заходящий в квартиру или дом, в однофазной сети состоит из двух ( фаза и ноль ) или трех ( фаза, ноль, заземление ) проводов .

Для подключения электросчетчика и его правильной работы нам понадобится два провода — это фаза и рабочий ноль . Определить какой из ваших проводников фазный, а какой нулевой поможет статья «Как определить фазу, ноль и заземление самому, подручными средствами?»

Универсальная схема подключения проводов к однофазному электросчетчику

Схема выглядит следующим образом:

На схеме вы можете видеть расположенный по центру однофазный электросчетчик, слева к нему подходит вводной силовой кабель (фаза и ноль), справа расположены провода, выходящие на нагрузку, грубо говоря по ним уже протекает учтенная счетчиком электроэнергия, которая через защитную автоматику поступает к вашим розеткам, светильникам и т.д.

Порядок подключения проводов к клеммам однофазного счетчика следующий:

Клемма «1» – Фазный провод вводного кабеля (обычно белый, коричневый или черный провод)

Клемма «2» – Фазный провод, выходящий на нагрузку квартиры или дома (обычно белый, коричневый или черный провод)

Клемма «3» – Нулевой провод вводного кабеля (обычно голубой или сине-голубой провод)

Клемма «4» – Нулевой провод, выходящий на нагрузку квартиры или дома (обычно голубой или сине-голубой провод)

Подключения выполненного по этой схеме, уже достаточно для правильной работы однофазного счетчика в домашней электросети. Подключение защитного заземления к электросчетчику не требуется. Дополнительные клеммы, которые могут быть на вашей модели однофазного электросчетчика – вспомогательные и служат для доступа к сервисным функциям, обслуживания, автоматизации учета энергии и т.д.

СХЕМА ПОДКЛЮЧЕНИЯ ОДНОФАЗНОГО СЧЕТЧИКА В ЭЛЕКТРОЩИТЕ

В домашней электросети однофазный счетчик электрической энергии всегда устанавливается и взаимодействует с защитной автоматикой. Всё это хозяйство обычно располагается в специальном ящике – щите учета и распределения (ЩУР) электроэнергии.

И конечно же существуют правила, по которым выполняется подключение однофазного электросчетчика. Если следовать им, самая простая схема подключения однофазно счетчика должна выглядеть следующим образом:

Как видите, перед электросчетчиком, необходимо установить однополюсный автоматический выключатель, так называемый «вводной автомат», в который заходит фазный провод вводного кабеля и уже из него фаза поступает в клемму «1» электросчетчика, рабочий ноль заходит сразу в клемму «3» , а защитное заземление (защитный ноль) подключается напрямую к нулевой шине.

В качестве нагрузки в нашем примере, выступают – защитный автоматический выключатель, к которому можно подключить группу освещения и автоматический выключатель дифференциального тока (дифференциальный автомат, дифавтомат), на группу розеток. Компоновка вашего щита может быть иной, но принцип подключения автоматики после однофазного электросчетчика будет схожим.

Это наиболее простая из рекомендованных в ПУЭ (правила устройства электроустановок) и часто применяемая, схема подключения однофазного электросчетчика.

Так же, я бы рекомендовал рассмотреть более доработанный, усовершенствованный вариант схемы подключения однофазного электросчетчика, в котором используется двухполюсный вводной автомат.

Как видите, в этой схеме через двухполюсный автоматический выключатель, проходит не только фазный, как в первом случае, но и нулевой проводник вводного питающего кабеля. Теперь, в случае возникновения аварийной ситуации и срабатывания вводного автомата, разорвется и нулевой провод, на котором, в некоторых случаях, может быть опасный потенциал и это не единственное преимущество данной схемы подключения. Помните, важно использовать именно двухполюсный автомат, а не два, не объединенных однополюсных!

Если же у вас остались вопросы по схеме подключения однофазного электросчетчика, дополнения или замечания к написанному, обязательно пишите в комментариях к статье, постараюсь оперативно всем ответить!

Источник: rozetkaonline.ru