Расчет мощности электродвигателя
Если вы задались целью создать электрический привод, например, собственную мельницу, насосную станцию, транспортерную ленту или другое полезное в хозяйстве устройство, вам надо найти или купить электродвигатель и убедиться в том, что его мощность соответствует поставленным задачам.
Сегодня мы осветим некоторые аспекты, касающиеся устройства и рабочих качеств электрических машин, что поможет вам сделать правильный выбор.
Как выбрать электродвигатель
Подбор электродвигателя стоит начать со знакомства с типами электрических машин. Основное их отличие состоит в способе взаимодействия магнитных полей статора и ротора. По этому признаку они делятся на два типа:
Синхронные электрические машины
У них магнитное поле статора и ротора создается внешними источниками, они независимы друг от друга, их смена положения их полюсов происходит синхронно.
Двигатели постоянного тока
Исходя из принципа механики Ньютона, утверждающего, что всякое движение относительно, электродвигатель постоянного тока можно назвать синхронной машиной. Хотя магнитные поля статора и ротора в ней неподвижные, а вращение вала происходит за счет эффекта отталкивания одноименных полюсов магнитов и притягивания разноименных.
Синхронизация их положения относительно друг друга происходит особого устройства – коллектора, расположенного на валу ротора. Это кольцо из меди, поделенное на секторы диэлектриком. Концы обмоток ротора подключаются к этим секторам и создают контактные пары.
На них через угольные щетки подается постоянный ток. Во время вращения вала происходит переключение полюсов между парами. Магнитное поле статора может создаваться металлами с остаточным магнетизмом или прохождением тока по обмоткам. Последние применяются в электрических машинах большой мощности.
Их достоинством является большой коэффициент полезного действия, до 98%, а также стабильно высокий вращающий момент и малая зависимость от перегрузок. Двигатели постоянного тока отлично подходят для привода подъемных механизмов, а также в качестве тяговых на электротранспорте.
Ими очень просто управлять: для снижения скорости вращения надо лишь уменьшить величину подаваемого напряжения, а для реверсирования достаточно сменить полярность. Недостатком является сложность устройства и невысокая надежность щеточного узла, его склонность к искрению и шумность. Кроме того, постоянное напряжение сложно передавать на большие расстояния, из-за чего нет магистральных линий такого типа. Питание придется создавать самостоятельно, используя выпрямительные или инверторные схемы. Также про двигатели постоянного тока можно почитать здесь.
Коллекторные двигатели
По своей конструкции они аналогичны двигателям постоянного тока. Однако питаются переменным однофазным током. Статорная обмотка возбуждения у них включена последовательно с обмоткой якоря. Вращение вала происходит за счет синхронной смены полюсов магнитного поля в статорной и роторной обмотках.
К перечисленным выше достоинствам – большому вращающему моменту, нечувствительности к перегрузкам, стоит отнести и то, что это единственная электрическая машина переменного тока, которой можно без проблем управлять.
Для изменения скорости вращения вала достаточно уменьшить питающее напряжение, а для реверсирования поменять местами точки подключения коллекторного узла со статорной обмоткой. Поэтому коллекторные электродвигатели широко применяются в бытовых электроприборах.
Например, в стиральных машинах, дрелях и другом электрифицированном инструменте. К недостаткам, основным из которых является сложность и малая надежность щеточного узла, стоит отнести и невозможность подключения трехфазного напряжения. Просто потому, что в этом случае щеток должно быть шесть. Это ограничивает максимальную мощность двигателей: у однофазных машин при напряжении 220 вольт это значение не бывает более 2,5 киловатта.
Синхронные электродвигатели переменного тока
У них статорная обмотка питается переменным трехфазным током, а роторная – постоянным. Чтобы их магнитные полюса сцепились и вызвали движение вала, такой электродвигатель надо раскрутить вручную или другим мотором. Фактически они являются генератором переменного тока, работающим в режиме вращения. Достоинством машины являются высокий крутящий момент и стабильность частоты вращения.
Недостатками – сложность пуска и наличие коллектора со щеточным узлом, что снижает их надежность. А также невозможность регулирования частоты вращения. Применяются в установках, которые работают постоянно или с очень длительным рабочим циклом. Например, на перекачивающих станциях или транспортерных лентах.
Узнать больше об электродвигателях можно узнать в нашей статье «Электрический двигатель: виды и характеристики».
Асинхронные электрические машины
В них магнитное поле ротора является порождением вращающегося магнитного поля статора. Поскольку между этими деталями машины есть воздушный зазор, передача энергии между ними происходит с потерями. Поэтому фаза тока в роторе отстает от фазы тока в статоре на небольшой угол (не более 100), который определяет величину коэффициента мощности cosφ. Это отставание и является причиной того, что электрическую машину этого типа называют асинхронной.
Двигатели с короткозамкнутым ротором
Обмотка ротора у них – это набор металлических стержней, которые соединяют два кольца. Получившуюся фигуру называют «беличье колесо». В момент подачи напряжения на статорную обмотку в роторе возникает ток короткого замыкания, энергия которого тратится на раскручивании вала и тем самым гасится. У него несколько меньший КПД, чем у синхронных машин, он не превышает 80%.
После набора оборотов он имеет очень стабильный вращающий момент на валу и хорошо выдерживает перегрузки. Главными достоинствами таких двигателей является его простота и надежность, благодаря которым они очень широко распространены. Недостатками – сложность управления.
Для изменения скорости вращения необходимо менять частоту питающего напряжения или количество статорных обмоток, которое определяет количество полюсов электромагнита – чем их больше, тем она ниже. Также электродвигателям с короткозамкнутым ротором свойственен большой пусковой ток, перегружающий сеть, а также резкий рост вращающего момента при подключении питания, что может вызвать поломку редуктора привода.
Двигатели с фазным ротором
Пуск асинхронных двигателей с короткозамкнутым ротором большой мощности (более 30 кВт) связан с чрезвычайной перегрузкой питающей сети. Для устранения этого явления используют машины с фазным ротором, обмотка которых состоит из трех катушек, соединенных звездой. Их концы соединены угольными щетками с тремя контактными кольцами, расположенными на оси двигателя.
В отличие от коллектора двигателя постоянного тока они не поделены на сектора. При запуске такой машины используется трехфазный реостат, сопротивление которого в момент пуска максимальное. Постепенно уменьшая активное сопротивление ротора, добиваются плавной раскрутки вала электродвигателя. При достижении номинальных оборотов его закорачивают.
Изменяя сопротивление ротора, можно добиться изменения частоты вращения. Достоинством машины такого типа является отсутствие перегрузки в момент запуска и плавное нарастание вращающего момента. Поэтому ее применяют в грузоподъемном оборудовании. Недостаток – сложность устройства и более низкий, чем у машин с короткозамкнутым ротором КПД, он не более 60%.
Как рассчитать мощность электродвигателя
При расчете мощности электродвигателя надо ориентироваться на потребности обеспечиваемого технологического процесса. В Сети так много методичек для определения этого параметра, что вы можете запутаться окончательно. Предлагаем вам довольно простую универсальную формулу, пригодную для любых случаев.
P – мощность электродвигателя. Т – потребный вращающий момент на валу, а Ω – угловая скорость.
Ft– потребное тяговое усилие, оно рассчитывается по формуле: Ft= t ∙ M ∙ 2.5, где t – коэффициент трения (для подшипников качения он равен 0.02), М – масса перемещаемого груза, а 2.5 – это коэффициент Ньютона. R – радиус рабочего органа, например, крыльчатки насоса.
Ω = π ∙ n / 30, где π = 3.14, а n – паспортная частота вращения приводимого в действие устройства.
Полученное значение лучше увеличить в 1,5 раза, чтобы предусмотреть возможные перегрузки во время работы привода.
При расчете рабочего тока электродвигателя необходимо учитывать, что при соединении обмоток статора асинхронного электродвигателя звездой он в 1,73 раза меньше, чем при соединении треугольником. На эту же величину уменьшается и мощность.
Окончательно убедиться в работоспособности созданного привода вы сможете только на практике. Но если вы будете следовать изложенным выше рекомендациям, то вероятность того, что все будет работать как надо без дополнительных переделок, значительно повысится.
Источник: electriktop.ru
Как рассчитать мощность электродвигателя
Как выполнить расчёт потребляемой мощности асинхронного электродвигателя из сети, если по шильдикам можно узнать только номинальную мощность? Для этого необходимо:
- обратить внимание на остальные показатели – это η и cosφ (КПД и коэффициент мощности);
- учесть связь динамических характеристик вала и КПД.
>
По имеющимся данным, можно рассчитать затраченную мощность электроэнергии:
Pз=Р/η.
Но нужно помнить, что потребляемая энергия электрическими приборами включает в себя как активную, так и реактивную компоненту.
Расчёты основных параметров асинхронного электродвигателя
Активная мощность тратится на выполнение полезной работы и создание тепла. Обозначается буквой «P», измеряется в W и вычисляется:
P=I*U*cosφ.
Реактивная мощность создаётся колебаниями энергии электрического поля. Она обуславливает способность деталей реактивной машины сохранять и излучать электромагнитную энергию. Речь идёт о токе, который заряжает конденсатор или создает магнитное поле вокруг витков обмотки катушки. Обозначается буквой «Q», измеряется в Var и рассчитывается:
Q=I*U*sinφ.
Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется:
S = P / cosφ = √(P 2 + Q 2 )=I*U.
Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.
Лучшее представление данной величины может быть получено в виде векторной диаграммы, индуктивная составляющая – это положительная координата на оси Y, емкостная – отрицательная. Очевидно, что эти два значения несколько компенсируют друг друга, составляя координату вектора, которая будет либо положительной, либо отрицательной. Чем меньше угол между ними, тем полная мощность становится ближе к активной.
Коэффициент мощности cosφ для трёхфазного асинхронного двигателя равен 0,8–0,9. Если его необходимо увеличить, то довольно часто добавляют конденсаторы в цепи двигателя. Функция этих конденсаторов заключается в том, чтобы обеспечить намагничивающий ток, снижающий амплитуду реактивной составляющей. Чем выше cosφ, тем меньше электромашина потребляет энергии.
Как определить мощность электродвигателя?
Для того чтобы выполнить расчёт понадобятся измерительные инструменты и справочная информация. Итак, существуют варианты определения мощности электродвигателя:
- по току. Подаём питание на асинхронный электродвигатель. Поочередно делаем замеры тока в каждой обвивке амперметром. В итоге среднее значение тока умножается на напряжение и получается потребляемая мощность электродвигателя;
- по размерам. Замеряем диаметр и длину сердечника статора. Узнаем частоту оборотов вала. Далее, производим приближённый расчёт «постоянной» по формуле:
3,14•D•n/(120•f).
На основе расчёта находим в справочнике константу. Вычисляем
P = C•D²•l•n•10^(-6);
- по тяговой силе. Измеряем скорость оборотов вала с помощью тахометра, радиус вала обычной линейкой, тяговое усилие движка динамометром. Для расчёта все найденные значения перемножаем
P =M•w= F•2•3,14•n•r.
На основе этих математических выражений можно сделать вывод, что асинхронные двигатели могут иметь одинаковую мощность, но различаться по частоте вращения вала, что существенно влияет на его габариты. Рассмотрим также смысл использования регуляторов мощности.
Какие бывают виды регуляторов?
Существует два вида регуляторов, доступных на сегодняшнем рынке:
- на переменном резисторе,
- электронный (шаговый и подвижный).
Все они обладают разными способами управления скоростью вращения и, посему, эффективность (потребление электроэнергии) у каждого вида отличается. С этой точки зрения, классический регулятор – самый дешевый, но неэффективный. Давайте рассмотрим все три типа.
Регулятор на переменном резисторе
На самом деле этот реостат имеет внутри огромную катушку. Выбирая низкие параметры скорости, мы, по сути, выбираем более высокое сопротивление цепи. Это приводит к снижению потребляемого тока (так как напряжение является фиксированной величиной). Аппараты громоздкие по размеру и недорогие по цене.
Электронный регулятор
Электронные – это новейшие типы из доступных регуляторов на рынке. Они намного меньше по размерам, чем другие. Для понижения напряжения в них используются вместо резисторов конденсаторы, которые регулируя скорость вращения, управляют сигналом электропитания. В отличие от реостатов не нагреваются и, значит, экономят электроэнергию, когда мотор работает на малых скоростях.
Регуляторы способны сэкономить до 40% на «1» скорости и около 30% на «2-й» скорости по сравнению со своими резисторными аналогами. Существуют электронные разновидности регуляторов:
- подвижные с плавным регулированием.
- шаговые с пронумерованной скоростью действия (обычно от 1 до 5).
Эти устройства обеспечивают низкий уровень искажений движения мотора и, следовательно, меньше нагреваются. Вариант с лучшей технологией и экономией электричества.
Заключение
Мощность асинхронного двигателя – основная техническая характеристика этого устройства, которая влияет на сферу применения и выполняемые задачи. Для регулирования соотношения физических величин используются регуляторы. Формулы, выражающие связь физических показателей асинхронных двигателей необязательно помнить все, их можно легко выводить самим из тех, что знакомы по школьной программе физики.
Источник: electricdoma.ru
Как определить мощность и ток электродвигателя
Все электрические двигатели выпускаются с табличками на корпусе, из которых можно узнать основные характеристики электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип двигателя, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.
Из всех параметров наиболее важное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Именно эти данные позволяют нам определить достаточность мощности для привода, необходимое сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и тепловое реле.
Но бывает, что нет паспорта или таблички и для определения этих величин необходимо будет сделать измерения. Как узнать мощность, рабочий ток и снизить пусковой, Вы узнаете далее из этой статьи.
Как определить мощность электродвигателя
Проще всего посмотреть на табличку и найти величину в киловаттах. Например, на картинке она равна 45 кВт.Учтите, что эта величина на табличке указывает на потребляемую активную мощность из электросети. Полная же мощность будет равна сумме активной и реактивной мощности. Электрические счетчики в доме или гараже считают только расход активной электроэнергии, а учет реактивной энергии ведется только на предприятиях при помощи специальных счетчиков. Чем выше у электродвигателя cos(fi), тем меньше будет составляющая реактивной энергии в полной мощности. Не стоит путать cos(fi) с КПД. Этот показатель показывает сколько электроэнергии переводится в полезную механическую работу, а сколько в бесполезное тепло. Например, КПД равный 90 процентам, говорит о том, что десятая часть потребленной электроэнергии уходит на тепловые потери и трение в подшипниках.
Вы должны иметь ввиду, что в паспорте или на табличке указывается номинальная мощность, которая будет равна этому значению только при условии достижения оптимальной нагрузки на вал. При чем перегружать не стоит вал по целому ряду причин, лучше выбрать по мощнее мотор. На холостом ходу величина тока будет гораздо ниже номинала.
Как же определить номинальную мощность электродвигателя? В интернете Вы найдете много различных формул и расчетов. Для некоторых необходимо помереть размеры статора, для других формул понадобится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не понадобится вообще.
Как определить мощность любого электроприбора в доме или гараже? Конечно с помощью счетчика электроэнергии. Перед началом измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.
Далее если у Вас электронный счетчик типа Меркурий, все очень просто надо включить мотор под нагрузкой и погонять минут 5. На электронном табло должна высветится величина нагрузки в кВт, подключенная к счетчику в данный момент.
Если же у вас дисковый индукционный счетчик учитывайте, что он учет ведет в киловатт/часах. Запишите перед началом измерений последние показатели, включайте двигатель строго секунда в секунду ровно на 10 минут, затем после остановки отнимите новые показания от предыдущих и умножайте кВтч на 6. Полученный результат и будет активной мощностью данного двигателя в Киловаттах, для перевода в Ватты разделите на 1000. Рекомендую прочитать статью: как снимать показания электросчетчика.
>
Если двигатель маломощный, тогда для более высокой точности можно посчитать обороты диска. Например, за одну минуту он сделал 10 полных оборотов, а на счетчике написано 1200 оборотов= 1 кВт/ч. 10 умножаем на количество минут в часе и получаем 600 оборотов за час. 1200 делим на 600 и получаем 500 Ватт или 0.5 кВт. Чем дольше по времени будете измерять, тем точнее будут данные. Но время всегда должно быть кратно полной минуте. Затем делим 60 на количество минут измерения и умножаем на сосчитанные обороты. После этого величину оборотов, равных одному Киловатт/часу для вашей модели электросчетчика делим на полученный результат и получаем необходимую величину мощности.
Как определить потребляемый ток электродвигателя
Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.
Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.
Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.
Пусковой ток электродвигателя
При запуске любого типа электродвигателя возникает пусковой ток от 2 до 8 кратного значению номинального тока в рабочем режиме электродвигателя. Величина пускового тока зависит от типа двигателя, скорости вращения, схемы подключения, наличие нагрузки на валу и от других параметров.
Пусковой ток возникает, потому что в момент запуска наводится очень сильное магнитное поле в обмотках необходимое, что бы сдвинуть с места и раскрутить ротор. При включении мотора сопротивление обмоток мало, а следовательно по закону Ома, ток вырастает при неизменном напряжении в участке цепи. По мере того как двигатель раскручивается, возникает в обмотках ЭДС или индуктивное сопротивление и ток начинает уменьшаться до номинального значения.
Эти всплески реактивной энергии негативно сказываются на работе других электропотребителей, подключенных к этой же линии электропитания, что служит причиной возникновения особенно губительных для электроники скачков или перепадов напряжения.
Снизить вдвое пусковой ток можно при использовании специально разработанного для этих целей тиристорного блока, а лучше при помощи устройства плавного запуска (УПЗ). УПЗ с меньшим пусковым током и быстрее в полтора раза запускает мотор по сравнению с тиристорным запуском. Устройства плавного запуска подходят как к синхронным, так и к асинхронным двигателям. УПЗ выпускаются предприятиями Украины и России.
Для запуска трехфазного асинхронного двигателя сегодня нередко используются и преобразователя частоты. Широкое их распространение пока сдерживает только цена. Благодаря изменению величин частоты тока и напряжения удается не только сделать плавный запуск, но и регулировать скорость вращения ротора. По другому как только изменением частоты электрического тока, регулировать скорость вращения асинхронного двигателя нет возможности. Но следует знать, что частотный преобразователь создает помехи в электросети, поэтому для подключения электроники и бытовой техники используйте сетевой фильтр.
Использование устройства плавного запуска и частотного преобразователя позволяет не только сохранить стабильность электропитания у Вас и Ваших соседей, подключенных к одной линии электроснабжения, но и продлить срок службы электродвигателей.
Источник: jelektro.ru
Расчет мощности электродвигателя
Мощность электродвигателя – паспортная характеристика прибора, превращающего электрическую энергию в кинетическую. Это один из ключевых параметров при выборе устройства для обслуживания различного оборудования. Она всегда указывается в сопроводительной документации и дополнительно «штампуется» на шильднике электрического двигателя, закрепленном на его корпусе.
Но документы не всегда сохраняются, а надпись на шильднике может затереться. В таких случаях для дальнейшей эксплуатации, проверки, подключения может потребоваться расчет мощности электродвигателя. Он производится разными способами, о которых и расскажем.
Способы расчета мощности электродвигателя
Учитывая широкое распространение, неудивительно, что формул мощности электродвигателя существует довольно много. Самые простые в плане применения на производстве – следующие три подхода.
- Расчет мощности электродвигателя по току. Для определения фактического показателя прибор надо подключить (напряжение – фиксированное) и изменять ток поочередно на каждой из обмоток при помощи амперметра. Алгоритм действий такой:
- берется количество замеров;
- определяется сила тока в Амперах для каждого замера;
- все показатели суммируются и делятся на количество замеров;
- среднее значение силы тока умножаем на напряжение и получаем мощность электродвигателя в кВт (или Ваттах).
- Расчет мощности электродвигателя по размерам. Надо измерить диаметр и длину сердечника статора, узнать частоту оборотов вала.
- Расчет мощности электродвигателя асинхронного по силе тяги:
- тахометром определяем частоту вращения вала;
- штангенциркулем меряем радиус вала (если нет циркуля, можно взять обычную линейку);
- динамометр используем, чтобы замерять тяговое усилие устройства;
- формула мощности электродвигателя выглядит как P = F (тяговая сила)*n (частота вращения)*r (радиус вала)*2*3,14.
Формула мощности электродвигателя
Формула мощности электродвигателя может учитывать массу нюансов технологического процесса. Благодаря развитию IT-технологий сегодня найти способы расчета такого показателя не составляет труда. А вот выбрать в огромном количестве предложенных вариантов тот, который подойдет именно вам, как показывает практика, не так-то просто.
Чтобы вы не растерялись в огромном количестве методичек и рекомендаций интернета, предлагаем универсальный вариант формулы, который подойдет практически для любого случая. Выглядит она следующим образом.
- P – потребляемая мощность электродвигателя (номинальная);
- T – необходимый момент вращения на валу;
- Ω – угловая скорость.
У экспликатов тоже есть свои формулы.
- Вращающий момент (T) считается как произведение требуемого усилия тяги и радиуса рабочего органа подключаемого механизма.
- Усилие тяги (обозначается как Ft) можно рассчитать по формуле Ft = t*M*2,5, где t –коэффициент трения (берется из таблицы данных, для подшипников качения, например, он известен и равняется 0,02), а М – масса груза, который перемещает оборудование. Произведение корректируется на коэффициент Ньютона, который тоже известен и составляет 2,5.
- Радиус элемента вращения измеряют или берут из проектных/паспортных данных.
- Угловую скорость определяют так: Ω = число Пи (π, принимается как 3,14)*n/30 (n – частота вращательного движения механизма, которое приводит в действие электродвигатель – берется из паспорта). Чтобы электродвигателя хватило с учетом возможных перегрузок привода, угловая скорость, рассчитанная приведенным способом, корректируется в большую сторону на коэффициент 1,5.
При расчете мощности электродвигателя надо делать поправку на тип соединения обмоток статора, от которого зависит значение рабочего тока. В соединениях типа «звезда» ток меньше в 1,73 раза, чем в соединениях «треугольник». Соответственно, для «звезды» показатель тоже надо уменьшать в 1,73 раза.
Расчет мощности электродвигателя для оборудования
Чтобы определить, какой мощности электродвигатель нужен для обслуживания конкретного механизма, надо знать его (механизма) потребляемую мощность. Она обычно указывается для каждой категории установок и приборов, прописывается в паспортной документации и известна производителю. Если фактической информации по показателю нет, ее можно получить:
- по результатам теоретических расчетов;
- эмпирически, использовав результаты многочисленных опытов;
- методом снятия нагрузочных диаграмм, если опытной базы эксплуатации еще не накоплено (оборудование малоизученно), здесь нужны самопишущие приборы;
- через применение нормативов потребления энергии (статистических данных), которые учитывают удельные расходы электрической энергии при создании конкретного продукта.
Когда потребление известно, останется подставить его в формулу следующего вида.
- Рм – определенная теоретически/эмпирически или паспортная мощность оборудования;
– коэффициент полезного действия промежуточной передачи.
Расчетный показатель используется для выбора по каталогу продукции ПТЦ «Привод». При этом ориентироваться следует на номинальные мощностные показатели электродвигателя с небольшим запасом.
Проверять электрический двигатель по нагрузке или перегреву необходимости нет. Наш производственно-технический центр на этапе контроля качества готовых изделий проводит все испытания и расчеты с максимальным использованием материалов, которые заложены в моделях при номинальном расчете мощности электродвигателя. А вот контроль достаточности момента пуска для некоторых видов подключаемых механизмов может быть полезен. Это в особенности касается устройств с увеличенным сопротивлением трения на старте (транспортеры, рабочие узлы станков металлорезки).
>
Энергетическая эффективность электродвигателя
Как и у всех электроприборов, потребляющих электрическую энергию (платный ресурс), электродвигатель имеет свой класс энергоэффективности. От этого показателя зависят расходы производства на работу устройства. Он, в свою очередь, зависит от коэффициента полезного действия двигателя и указывается в технической документации. Как показывает практика, даже в средней категории электродвигателей (55 кВт) предпочтение версиям с более высоким классом энергоэффективности позволяет существенно снизить расходы энергии (экономия до 10 тыс. кВт в год).
Вы можете подобрать установку оптимального класса энергоэффективности по каталогу продукции ПТЦ «Привод» – в описании моделей есть вся необходимая информация. Здесь же можно заказать регулятор мощности электродвигателя, который тоже помогает сократить расход энергии и обеспечивает плавную работу устройства без рывков (увеличивает срок его службы).
Источник: reductor58.ru
Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата
Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.
Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.
Формула расчета мощности электрического тока
Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.
В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:
а для трехфазной сети: I = P/(1,73*U*cos φ),
где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.
Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.
Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).
Подбираем номинал автоматического выключателя
Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:
- 6 А – 1,2 кВт;
- 8 А – 1,6 кВт;
- 10 А – 2 кВт;
- 16 А – 3,2 кВт;
- 20 А – 4 кВт;
- 25 А – 5 кВт;
- 32 А – 6,4 кВт;
- 40 А – 8 кВт;
- 50 А – 10 кВт;
- 63 А – 12,6 кВт;
- 80 А – 16 кВт;
- 100 А – 20 кВт.
С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.
При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:
- электросауна (12 кВт) – 60 А;
- электроплита (10 кВт) – 50 А;
- варочная панель (8 кВт) – 40 А;
- электроводонагреватель проточный (6 кВт) – 30 А;
- посудомоечная машина (2,5 кВт) – 12,5 А;
- стиральная машина (2,5 кВт) – 12,5 А;
- джакузи (2,5 кВт) – 12,5 А;
- кондиционер (2,4 кВт) – 12 А;
- СВЧ-печь (2,2 кВт) – 11 А;
- электроводонагреватель накопительный (2 кВт) – 10 А;
- электрочайник (1,8 кВт) – 9 А;
- утюг (1,6 кВт) – 8 А;
- солярий (1,5 кВт) – 7,5 А;
- пылесос (1,4 кВт) – 7 А;
- мясорубка (1,1 кВт) – 5,5 А;
- тостер (1 кВт) – 5 А;
- кофеварка (1 кВт) – 5 А;
- фен (1 кВт) – 5 А;
- настольный компьютер (0,5 кВт) – 2,5 А;
- холодильник (0,4 кВт) – 2 А.
Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.
Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.
На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.
Источник: remontnichok.ru