Как устроен счетчик электроэнергии

Принцип действия и устройство счётчиков электрической энергии

С помощью электросчетчиков осуществляется учет израсходованной электрической энергии. Электросчетчики бывают индукционные и электронные.

Измерительный механизм индукционного однофазного счетчика электрической энергии (электроизмерительный прибор индукционной системы) состоит из двух электромагнитов, расположенных под углом 90° друг к другу, в магнитном поле которых находится легкий алюминиевый диск. Схема устройства счетчика электрической энергии показана на рисунке 1.

Для включения счетчика в цепь его токовую обмотку соединяют с электроприемниками последовательно, а обмотку напряжения – параллельно. При прохождении по обмоткам индукционного счетчика переменного тока в сердечниках обмоток возникают переменные магнитные потоки, которые, пронизывая алюминиевый диск, индуцируют в нем вихревые токи.

Взаимодействие вихревых токов с магнитными потоками электромагнитов создает усилие, под действием которого диск вращается. Последний связан со счетным механизмом, учитывающим частоту вращения диска, т.е. расход электрической энергии.

Рис. 1. Схема устройства счетчика электрической энергии: 1 – обмотка тока, 2 – обмотка напряжения, 3 – червячный механизм, 4 – счетный механизм, 5 – алюминиевый диск, б – магнит для притормаживания диска.

Рис. 2. Устройство индукционного электросчетчика

Для учета потребленной электроэнергии в сетях переменного трехфазного тока применяются трехфазные индукционные электросчетчики , принцип действия которых аналогичен однофазным.

В настоящее время все более широкое применение получили электронные (цифровые) электросчетчики . Электронные счетчики обладают рядом преимуществ по сравнению с индукционными счетчиками:

– малые габаритные размеры,

– отсутствие вращающихся частей,

– возможность учета электроэнергии по нескольким тарифам,

– измерение суточных максимумов нагрузки,

– учет как активной, так и реактивной мощности,

– возможность дистанционного учета электроэнергии.

Рис. 3. Схема устройства электронного счетчика электроэнергии

В настоящее время учёт электроэнергии, в основном, производится по одному тарифу (то есть стоимость электроэнергии одинакова независимо от времени потребления). Однако, начинает вводится многотарифные системы оплаты, при которых стоимость электрической энергии различна по часам суток или по дням недели.

Указанный подход обеспечит более равномерное потребление электроэнергии потребителями и снижение максимальной нагрузки энергосистемы. Поэтому уже выпускаются электронные счётчики со встроенными часами, которые питаются от аккумуляторной батареи, что обеспечивает учёт электроэнергии по разным интервалам времени, задаваемым программно.

Как правило, электронные счётчики имеют жидкокристаллический индикатор, на котором отображаются потребляемая электроэнергия по каждому из тарифов, текущая потребляемая мощность, текущее время и дата и другие измеряемые прибором параметры.

Источник: electricalschool.info

Бытовой счетчик электроэнергии: принцип работы и устройство, преимущества и недостатки различных типов оборудования

Сегодня в каждом доме находится огромное количество различных электрических приборов, и чтобы отслеживать потребление ими электроэнергии,устанавливается приборы учета.

Но, когда необходимо их заменять, возникает проблема, ведь придя в магазин мы видим огромное количество разных вариантов. А не имея нужных знаний мы теряемся в выборе, не понимая, что к чему. Чтобы этого не случалось, стоит разобраться, какие есть виды счетчиков и их особенности.

Сегодня существует всего несколько типов счетчиков, это: электронные и механические (еще их называют индукционными).

Индукционные

После включения в розетку любого электроприбора, возрастает нагрузка и соответственно увеличивается скорость вращения магнитного диска.

Наверное, всем знакомы счетчики, которые имеют вращающийся диск.

Схема работы — проста и понятна, чем выше скорость вращения этого колесика, тем, соответственно, больше идет расход электроэнергии.

Чтобы определить показания израсходованной энергии – достаточно посмотреть на обозначения, которые находятся на специальных крутящихся барабанах.

Такие счетчики имеют следующий принцип работы:

    Внутри устройства есть 2 катушки – первая это катушка напряжения, а вторая токовая. Магнитные потоки, которые они образуют, проникают через алюминиевый диск. А потоки, идущие от токовой катушки, проникают по несколько раз. В результате этого образуются электромеханические силы, которые собственно и вращают этот диск.

Устройство индукционного счетчика. (Для увеличения нажмите)

После вращения дисковая ось начинает взаимодействие уже с самим счетным механизмом, которым является червячная передача.А уже непосредственно от неё поступает информация на сами цифровые барабаны, которые мы видим на счетчике.

В зависимости от скорости вращения диска, зависит и мощность сигнала — чем она больше, тем выше мощность, а соответственно больший расход энергии.

  • В те моменты, когда потребляемая мощность снижается, начинает действовать магнит торможения. Именно за счет постоянного взаимодействия его с вихревыми потоками и происходит уменьшение частоты вращения диска.В этом случае магнит является источником электромеханической силы, которая имеет противоположную направленность кручения диска, что и уменьшает его скорость, и может его полностью остановить.
  • Но со временем их вытесняют более современные и имеющие меньше недостатков электронные электросчетчики. Так, к примеру, индукционные счетчики электроэнергии имеют определенную погрешность в показаниях, за счет своих физических свойств.

    Плюсы и минусы механических моделей

    К положительным сторонам, которые имеет данное устройство, можно отнести:

    • надежность в эксплуатации;
    • долговечность;
    • отсутствие подверженности к скачкам напряжения;
    • более дешевые, нежели электронные.

    А вот что касается недостатков, то их несколько больше, чем положительных сторон:

    • низкий класс точности;
    • близкая к нулю защита от воровства электричества;
    • повышенное потребление тока самим счетчиком;
    • при уменьшении нагрузки – пропорционально увеличивается и погрешность в расчете;
    • большой размер счетчика.

    Возможно, Вас заинтересует статья о том, как опломбировать счетчик электроэнергии.

    Статью о правилах замены старого электросчетчика на новый читайте здесь.

    Электронные

    Обмануть электронные счетчики невозможно, так как все проходящие мощности через него фиксируются, за счет преобразования их в импульсные сигналы.

    Данный тип бытовых электросчетчиков является хоть и более дорогостоящим, нежели индукционные, но, при этом, такие аппараты выгоднее в использовании. Они обладают более высоким классом точности, а также могут работать в режиме многотарифности.

    Работают такие электронные электросчётчики, преобразовывая поступающий от датчиков тока обычный аналоговый сигнал непосредственно в цифровой код, который полностью равнозначен используемой мощности. Дальше код в системе направляется в специальный микроконтроллер, где он проходит расшифровку.

    Последний этап движения – это экран дисплея, на котором уже и отображается, сколько используется сейчас электроэнергии и общий расход.

    Устройство электросчетчика. Для увеличения нажмите)

    Основной элемент в таких счетчиках — микроконтроллер.

    Читайте также:  Формула расчета освещенности помещения

    Как раз в его функции входит не только расшифровка сигнала, но и расчет потребляемой энергии в данный момент.

    Он также преобразует информацию для вывода на дисплей.

    Такой электросчетчик представляет собой корпус, в котором находится трансформатор тока, а также специальные модули, необходимые для преобразования сигнала.

    Если же говорить более детально, то он состоит из:

    • дисплея, на который выводится все информация;
    • источника переменного напряжения;
    • главной детали в виде микроконтроллера, о котором упоминалось выше;
    • преобразователя;
    • супервизора;
    • чипа для хранения данных;
    • специального телеметрического выхода, который необходим для принятия сигнала об уровне электропотребления;
    • часов, для отображения текущего времени;
    • оптического порта, который необходим для считывания показаний счетчика, а также для его программирования.

    Возможно, Вам будет также интересна статья о двухтарифных счетчиках электроэнергии.

    Статью о том, когда и как проверять электросчетчик, читайте здесь.

    Плюсы и минусы электронных приборов

    К положительным сторонам можно отнести:

    • многотарифность;
    • возможность ведения учета в двух направлениях;
    • легкий доступ к данным;
    • возможность долговременного хранения данных об потреблении электроэнергии;
    • на экран выводится мощность и объем потребляемой энергии;
    • высокий класс точности;
    • фиксация всех попыток несанкционированного хищения электричества;
    • возможность получить данные счетчика дистанционно;
    • незначительные габариты.

    Что касается недостатков таких устройств, то их крайне мало:

    • высокая чувствительность к колебаниям напряжения;
    • повышенная цена в сравнении с индукционными;
    • сложность, а зачастую и невозможность ремонта.

    Смотрите видео, в котором специалист разъясняет особенности устройств различных типов счетчиков электроэнергии:

    Источник: teplo.guru

    Устройство и принцип работы цифрового электросчетчика

    Для контроля затрат электричества в квартирах многоэтажек используется электронный счетчик электроэнергии. Подключение цифрового прибора осуществляется через общий трансформатор. В процессе работы счетчик постоянно измеряет мощность заданного участка сети и выводит ее величину в удобочитаемом виде.

    Конструкция и принцип работы

    Измерительный аппарат совместим с однофазными и трехфазными цепями переменного тока. Его конструкция представлена:

    • корпусом из термостойкого пластика или металла с клеммной колодкой;
    • дисплеем – ЖК-индикатором, где отображаются данные и время, или механическим;
    • источником запитки электронной схемы;
    • токовым трансформатором – выполняет функции измерителя;
    • микроконтроллером, преобразующим сигнал на входе в электрические величины;
    • телеметрическим выходом для интеграции с АСКУЭ;
    • часами – позволяют отслеживать реальное время и даты;

    Через оптический порт можно запрограммировать цифровой счетчик.

    Основные характеристики цифровых счетчиков

    На территории РФ приборы начали применять с момента приватизации энергетической отрасли и подорожания электричества. Электронные устройства обладают рядом положительных характеристик:

    • точность показаний при быстрой перемене напряжения или его снижении;
    • учет электроэнергии по нескольким тарифам;
    • подсчет различных типов энергии с помощью одного аппарата;
    • одновременно замеряется мощность, количество и качество энергоресурсов;
    • хранение данных в памяти и наличие к ним пользовательского доступа;
    • предотвращение несанкционированного доступа и хищения электричества;
    • дистанционное снятие показаний и предварительный подсчет потерь;
    • совместимость с автоматическими сервисами коммерческого учета электроэнергии.

    Прибор не могут взломать злоумышленники и подключиться к нему для кражи электричества. Интервал проверки изделия составляет 16 лет.

    Отличия электронных счетчиков от индукционных

    Индукционные модели работают по принципу создания электромагнитного поля в катушке и его взаимодействия с токопроводящим диском. Однофазный аппарат подключается к катушке-сети переменного тока параллельно. Магнитные потоки и вихревые токи взаимодействуют между собой только в диске. Индукционный счетчик будет функционировать нормально при фазовом сдвиге в 90 градусов. Энергозатраты зависят от интенсивности вращения диска, которая соответствует мощности потребления.

    Принцип работы эл счетчика основывается на подсчетах мощности активного и реактивного типа. Это позволяет точно подсчитывать энергозатраты, если в помещении трехфазный тип подключения.

    Индукционные модели считают расход по единому тарифу, цифровые приборы отслеживают параметры в зависимости от времени суток. Точность измерения нового счетчика – 1-й категории, традиционные выпускаются с классом точности 2,5.

    По сравнению с индукционным цифровой счетчик на собственные нужды затрачивает минимум энергоресурсов. Традиционные устройства нельзя поставить снаружи, а электронные могут работать в условиях мороза, защищены от воздействия влаги и пыли.

    Надежность показаний и необходимость ремонта

    Качественный цифровой электросчетчик отличается высокой точностью. Проверить параметры без нарушения целостности корпуса и пломб можно так:

    1. После прекращения подачи напряжения индикатор останавливается. Если учет продолжается – устройство неисправно.
    2. Счетчик всегда жужжит при работе, о неполадках свидетельствует самоход.
    3. Показания искажаются при отключении всех бытовых приборов. Обязательно проверяется наличие самохода.

    Тестирования лучше производить ночью, в условиях минимальной нагрузки на электросеть. Если самохода нет, импульсы индикатора отсутствуют на протяжении 15 минут. Импульс, возникший, когда подключение не произведено, означает поломку.

    Заниматься ремонтом цифрового счетчика должны только сотрудники компании энергосбережения. Пользователь обращается в инстанцию для получения разрешения на проверку и замену аппарата.

    Обозначение показателей цифрового счетчика

    На основании данных электронного счетчика определяется несколько показаний:

    • Энергозатраты за конкретный временной период. Понадобится вычесть из конечных показаний начальные. При необходимости расчетные данные умножают на коэффициент трансформации;
    • Подключение бытовой техники и освещения в определенный момент. Устанавливается по загоранию/выключению светового индикатора.
    • Параметры мощности, величины проходящего тока, процессы перегрузки сети и счетчика.

    Цифровые приборы можно запрограммировать на дневную и ночную тарификацию. Для этого достаточно выбрать время подсчета.

    Критерии подбора

    Перед покупкой устройства стоит обращать внимание на ряд параметров:

    • Допустимая величина тока. Цифровые модели рассчитаны на ток 5-60А, что подходит для квартир и частных домов.
    • Дата проверки. На трехфазном счетчике должна находится пломба не старше 1 года.
    • Количество пломб. Первое опломбирование делают государственные органы – отметку проставляют на кожухе. Вторая пломба на зажимной крышке – от предприятия энергоснабжения.
    • Опционал. Чем больше функций, тем дороже счетчик. Но внутренний тарификатор создает график нагрузки, а в журнале событий отмечается повышение и понижение напряжения в каждой фазе.
    • Обслуживание и гарантии. Качественные модели имеют большой гарантийный период. Сервисный центр бренда есть в городе покупателя.
    • Интервал проверки. Оптимально – от 10 до 16 лет.

    Продавец обязан поставить печать на приборе и записать его стартовые показания.

    Список лучших аппаратов учета

    Потребители и профессиональные электрики рекомендуют несколько устройств.

    Меркурий 201.8

    Прочный бюджетный прибор с разрешением ЖК-экрана 7 разряда и классом точности 1. Рассчитан на сеть с напряжением 220-230 В и силой тока 5-80 А. Исправно работает в условиях жары и мороза при влажности до 90 %. Оснащен:

    • модульным корпусом;
    • измерительным токовым конвертером;
    • винтовыми клеммами;
    • светодиодной подсветкой зоны показаний.

    Эксплуатационный срок модели – 30 лет, ревизионный – 16 лет.

    Нева М. Т.123

    Аппарат с рабочим напряжением 230 В и номинальным током 5 А. Гарантия изготовителя – 30 лет. Предназначен для измерения:

    • частоты напряжения в сети;
    • активной мощности электролинии;
    • показателей токового напряжения и силы.

    Модель имеет 1 класс точности, может устанавливаться в офисах, домах, торговых залах и квартирах.

    Энергомера CE102M S7 145-JV

    Класс точности модели – 1. Она не подвергается климатическим, электромагнитным и механическим повреждениям. Устройство рассчитано на силу тока 5-60 А, рабочее напряжение 220-230 В. Может работать без сбоев при температуре от -45 до +70 градусов и влажности 98 %. Дополнительные возможности:

    • шпунт;
    • память энергонезависимого типа;
    • интерфейсы связи;
    • пользовательское перепрограммирование;
    • вывод данных за нужный период времени;
    • снятие информации без напряжения.

    В память счетчика нельзя внести корректировки.

    Электронные счетчики – это современные учетные аппараты с широкими функциональными возможностями. Они гарантируют точность измерений, отличаются надежностью и стойкостью к внешним воздействиям.

    Источник: strojdvor.ru

    Принцип работы электронного счетчика

    Для расчёта электрической энергии, потребляемой за определённый период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счётчик электрической энергии. На рис. 1 показана блок-схема электромеханического счётчика.


    Рис. 1. Блок-схема электромеханического счетчика электрической энергии

    Реализация цифрового счётчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности — в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.


    Рис. 2. Блок-схема цифрового счетчика электрической энергии

    Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счётчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потреблённой энергии за каждый месяц, по различным тарифам и так далее.

    Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ИС. Сейчас начали выпускать специализированные ИС — преобразователи мощности в частоту — и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счётчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

    Перейдём к анализу построения простейшего варианта цифрового счётчика на наиболее дешёвом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять её защиту в различных аварийных режимах. Рассматриваемый счётчик фактически представляет собой цифровой функциональный аналог существующих механических счётчиков, приспособленный к дальнейшему усовершенствованию.


    Рис. 3. Основные узлы простейшего цифрового счетчика электроэнергии

    Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счётчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счётчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счётчике.

    Алгоритм работы программы (рис. 4) для простейшего варианта такого счётчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохранённое значение и выводит его на дисплей. Затем контроллер переходит в режим подсчёта импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счётчика.


    Рис. 4. Алгоритм работы программы

    При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определённое число изменений показаний счётчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

    Схема цифрового вычислителя показана на рис. 5. К разъёму X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счётчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объёма 24С00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъёму Х2.

    Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счётчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счётчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

    Определённый интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищённость программного кода и возможность обновления ПО без монтажных работ.


    Рис. 5. Цифровой вычислитель для цифрового счетчика электроэнергии

    Ещё более интересен вариант счётчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нём можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищённого от несанкционированного доступа. Такие счётчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

    Переход на цифровые автоматические системы учёта и контроля электроэнергии — вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счётчик электроэнергии имеет очевидные преимущества: надёжность за счёт полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учётом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эксплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счётчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учёта и контроля потребляемой электроэнергии.

    Источник: cxem.net

    Устройство и принцип работы электросчетчика

    Учет расхода потребляемой электрической энергии на объектах любой формы собственности осуществляется с помощью электросчетчиков. Правильный выбор прибора отражается на экономии электроэнергии, что является первостепенной задачей в настоящее время. Ни один объект не будет включен к сетям энергопоставляющих компаний без установки электросчетчика. Правила его выбора, места установки и подключения регламентируются нормативно-технической документацией, среди которых ПУЭ занимает основное место. Каждый домовладелец оформляет договор на подключение к сетям, где модель счетчика должна быть обязательно указана. Это необходимо для того, чтобы осуществлять поверку счетчика, периодичность которой для каждой модели устанавливается предприятием-изготовителем.

    Счетчик для учета электроэнергии

    Классификация

    Отечественные и зарубежные производители выпускают огромный ассортимент электросчетчиков. Разобраться поможет классификация устройств по следующим признакам:

    • принципу работы (индукционные и электронные);
    • количеству фаз или классу напряжения (одно,- и трехфазные);
    • способу подключения (напрямую и через измерительные трансформаторы);
    • количеству тарифов (одно-, двух,- и трехтарифные);
    • типу тарификатора (внешний и внутренний);
    • классу точности (0,2s; 0,2; 0,5s; 0,5; 1,0; 2,0; 2,5);
    • измеряемому току (базовый, стартовый и максимальный);
    • типу интерфейсов (импульсный, ИК порт, RS 232, RS 485, волоконно-оптическую линию связи, CAN, PLC-модем и GSM).

    Устройство и принцип работы

    Конструкция счетчика зависит от принципа его работы и осуществляемых функций. Индукционный однофазный счетчик используется в однофазных переменных сетях и состоит из следующих частей:

    • корпуса составного;
    • двух обмоток: токовой и напряжения;
    • двух магнитопроводов: обмотки тока и обмотки напряжения;
    • противополюса;
    • диска алюминиевого;
    • механизма червячного типа;
    • механизма счетного;
    • магнита постоянного, служащего для торможения диска;
    • оси, на которой закреплены счетный механизм, червячная передача и алюминиевый диск.

    Схематическое устройство однофазного электросчетчика индукционного типа

    Принцип работы устройства заключается в следующем. 2 электромагнита представляют измерительный механизм счетчика. Они расположены под углом 90° друг к другу. В магнитном поле этих электромагнитов находится диск, выполненный из алюминия. Счетчик включается в работу путем подсоединения с электроприемниками токовой обмотки последовательно, а с электроприемниками напряжения – параллельно. При прохождении переменного тока по обмоткам в сердечниках возникают магнитные потоки переменной величины. Они пронизывают диск, в результате чего индуцируют вихревые токи. При взаимодействии последних с магнитными потоками создается усилие, которое вращает диск. Он, в свою очередь, связан со счетным механизмом, который учитывает частоту вращения диска. Цифры, расположенные на счетном механизме фиксируют расход электрической энергии.

    При увеличении тока нагрузки возникает больший вращающий момент, что заставляет диск вращаться быстрее.

    Принцип работы трехфазных индукционных счетчиков аналогичен выше описанному счетчику, с той лишь разницей, что их используют в трехфазных сетях переменного тока.

    Вид спереди трехфазного индукционного электросчетчика со снятой крышкой

    Вид сбоку со снятой задней частью корпуса трехфазного индукционного счетчика

    С развитием электронных технологий появились счетчики учета расхода электроэнергии электронного типа. Принцип действия их довольно прост. Специальный преобразователь входные аналоговые сигналы с датчиков тока и напряжения преобразует в цифровой импульсный код. Он подается на микроконтроллер, который фиксирует количество потребляемой электроэнергии на дисплее изделия. Отсюда основными частями электронного счетчика являются:

    • кожух защитный;
    • трансформаторы измерительные тока и напряжения;
    • преобразователь;
    • микроконтроллера, являющиеся органом управления и передачи информации на дисплей;
    • колодка клеммная для подсоединения эл. проводов.

    Работа однофазных и трехфазных электронных счетчиков осуществляется по одним и тем же законам, с той лишь разницей, что в 3-хфазном осуществляется суммирование величин каждого из трех каналов.

    Структурная схема работы однофазного счетчика электронного типа

    Из схемы видно, что трансформатор тока включен в разрыв фазного провода, а трансформатор напряжения подключен к нулю и фазе. Сигналы величины тока и напряжения с помощью преобразователя преобразуются в мощность и частоту в цифровом виде, в дальнейшем микроконтроллер управляет оперативным запоминающим устройством (ОЗУ), электронным реле и дисплеем, на котором отражается цифровая информация, фиксирующая расход электроэнергии на подключенном к счетчику объекте. ОЗУ в некоторых моделях может играть роль передатчика информации, что дает возможность контролировать работу счетчика на расстоянии.

    Электронные счетчики для замеров расхода электроэнергии в трехфазных схемах, могут работать как в трех,- так и четырехпроводных цепях. Устройства хранят информацию с привязкой ко времени. Показания можно снимать за определенный период времени и фиксировать следующие показатели:

    • активное потребление;
    • реактивное потребление;
    • действующие значения напряжения и тока;
    • частоту в каждой фазе.

    Все это позволило создать многотарифные счетчики для подсчета потребления электроэнергии в разное время суток, по дням недели или сезонам.

    Видео про счетчик

    Из чего состоит и как работает счетчик потребления электроэнергии, расскажет видео ниже.

    Разобравшись в устройстве электросчетчиков, с уверенностью можно сказать, что электронные аналоги намного лучше индукционных, они более точно отражают информацию, ее удобно считывать и просматривать, при необходимости дистанционно. Единственное преимущество индукционных счетчиков – это их цена, которая гораздо ниже, чем у электронных моделей.

    Источник: elquanta.ru