Сопротивление пусковой и рабочей обмотки однофазного двигателя

Пусковая обмотка однофазного двигателя

Магнитопровод (сердечник) однофазного электрического двигателя имеет двухфазную статорную, вызывающую вращение ротора обмотку, состоящую из:

  • основной (рабочей) обмотки, создающей магнитное поле и работающей постоянно;
  • вспомогательной (пусковой) обмотки, создающей необходимый пусковой момент и включающейся только на достаточно короткое время пуска двигателя.

Вспомогательная обмотка занимает, как правило, третью часть пазов статора.

Характеристики пусковой обмотки

По сравнению с рабочей, пусковая обмотка обладает меньшим сечением токопроводящего проводника, обусловленного меньшей нагрузкой и количеством витков. Следовательно, во вспомогательной обмотке имеет место большее активное сопротивление (токовая плотность), как правило, порядка 30 Ом при сопротивлении рабочей обмотки 10-13 Ом. Иногда обмотки можно классифицировать чисто визуально или, при необходимости, произвести замеры активных сопротивлений.

Пусковая обмотка подключается в момент пуска однофазного двигателя через конденсатор и отключается после достижения ротором двигателя необходимой скорости вращения, продолжив дальнейшее вращение на рабочей обмотке.

В зависимости от способа создания пускового момента и использования конденсатора, однофазные электрические двигатели можно сгруппировать следующим образом:

  • конденсаторные — двигатели с рабочим, постоянно подключенным к пусковой обмотке конденсатором, ёмкость которого указана на клейме агрегата;
  • двигатели с расщеплённой фазой — двигатели с пусковым конденсатором, который взаимодействует со вспомогательной обмоткой только в короткий момент пуска.

Маркировка выводов вспомогательной (пусковой) обмотки: начало – П1, конец обмотки – П2 (основной: начало – Р1 или С1, конец обмотки – Р2 или С2).

Принцип работы и конструкции пусковой обмотки

Отключение вспомогательной (пусковой) обмотки выполняется за счёт падения пускового тока до значения, недостаточного для удержания сердечника, — происходит обесточивание пусковой обмотки. При помощи конденсатора (или в некоторых, более редких случаях индуктивности), фаза пусковой обмотки сдвигается на 90°. Время нахождения обмотки под пусковым током в несколько раз превышающим номинальный, во избежание перегрева и выхода двигателя из строя, должно быть строго регламентировано.

При подключении пусковой обмотки через внесенное сопротивление, вспомогательная обмотка должна быть выполнена как две близкие друг к другу, параллельные обмотки (так называемая «бифилярная технология катушек»). При этом, сопротивление является частью обмотки и увеличивается за счёт длины токопроводящего проводника, не изменяя при этом индуктивности катушки.

Механический разрыв цепи и отключение пусковой обмотки может осуществлять реле максимального тока, тепловое биметаллическое реле или центробежный или кнопочный выключатель, который необходимо удерживать в нажатом положении на момент запуска электрического двигателя.

Как определить пусковую обмотку однофазного двигателя?

В зависимости от количества выводов клеммной коробки электрического двигателя, возможны два конструктивно различающихся случая:

  • для четырёх выводов: меньшее активное сопротивление концов обмоток после замера укажет на рабочую (основную) обмотку, большее – на пусковую (вспомогательную);
  • для трех выводов производятся три замера концов обмоток: меньшее сопротивление укажет на основную обмотку, среднее по значению – на пусковую, а большее будет суммой активных сопротивлений основной и пусковой обмоток.

Для инверсии направления вращения однофазного двигателя следует поменять местами концы обмоток любой из статорных фаз.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник: podvi.ru

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Читайте также:  Звезда и треугольник

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Источник: stroychik.ru

Сопротивление пусковой и рабочей обмотки однофазного двигателя

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели – это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Читайте также:  Постоянное и переменное напряжение

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Источник: www.electromontag-pro.ru

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Как определить рабочую и пусковую обмотки

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее, а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом, 10 ом , 20 ом. Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки ( по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Источник: elektrica.info

СХЕМЫ ОБМОТОК ОДНОФАЗНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ.

Однофазные асинхронные электродвигатели мощностью до 1 кВт, редко до 2 кВт, широко применяются в условиях, когда имеется только однофазная сеть, например для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели станут хуже, чем у трехфазных, а. пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не будет запускаться. Поэтому в статорах однофазных двигателей устанавливают две обмотки, которые часто называют также фазами обмотки. Одна из них главная, или рабочая, другая вспомогательная. Обмотки располагаются по пазам статора так, что их оси сдвинуты относительно друг друга в пространстве на электрический угол 90° (рис.1).

Рис.1. Оси обмоток двух- и однофазных двигателей: а — расположение катушек разных фаз в пазах статора; б — условное изображение фаз обмотки.

Если фазы токов обмоток будут не одинаковы, т. е. сдвинуты во времени, то электромагнитное поле в статоре двигателя становится вращающимся. Энергетические показатели двигателя улучшаются и появляется пусковой момент. При сдвиге фаз токов на электрический угол 90° и одинаковых МДС обмоток поле становится круговым и КПД однофазного двигателя будет наибольшим. Добиться этого можно, выполнив обе обмотки двигателя одинаковыми и последовательно подключив к одной из них конденсатор (рис. 2.а). Такие двигатели называются однофазными конденсаторными.

Рис. 2.. Схемы включения однофазных двигателей: а — с постоянно включенным конденсатором (конденсаторные двигатели); б — с рабочим и пусковым конденсаторами; в — с пусковым элементом; Ср — рабочий конденсатор; Сп — пусковой конденсатор; ПЭ — пусковой элемент.

Читайте также:  Прибор учета электроэнергии

Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают Ср. Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой момент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включается второй — пусковой конденсатор (Сп). Суммарная емкость пускового и рабочего конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключается, а рабочий остается включенным (рис. 2.б). Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.

Рис. 3. Схема однослойной концентрической обмотки с m = 2, z = 16, 2р = 2,
выполненной вразвалку.

В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками (рис. 3). Они имеют либо четыре вывода – начала и концы главной и вспомогательной фаз, либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения общей точки обмотки.

Рис. 4. Схема однослойной концентрической обмотки с m = 2, z= 24, 2р = 4, q = 3, выполненной с «расчесанными» катушками.

Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин. Если же число ц нечетное, то большие катушки в группах делают «расчесанными» т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону (рис. 4).
Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем двигатели. Поэтому большинство однофазных асинхронных двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пускать, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называются двигателями с пусковой фазой (или с пусковой обмоткой).
Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем последовательного включения с ней так называемого пускового элемента (рис. 2.в) — конденсатора или резистора (чаще всего используют более дешевый — резистор).
Пусковые обмотки, как правило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают 1/3 всех пазов статора. В оставшихся 2/3 пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы (рис. 5).

Рис. 5. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с z = 24, 2р = 4; С1—С2 — главная фаза, В1—В2 — пусковая фаза.

Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой.

Рис. 6. Образование бифилярных витков.

При этом длина провода возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и МДС остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки (рис. 6). Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Последняя имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначаются петлей (рис. 7а). На рис. 7б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы указывают на то, что катушки выполнены с частично бифилярной намоткой.

Рис. 7. Схема обмотки с катушками, имеющими бифилярные витки: a — изображение катушек с бифилярными витками на схеме обмотки, б — схема обмотки с z = 24, 2р = 4.

В обмотке с бифилярными катушками надо учитывать, что в каждой катушке вспомогательной фазы часть витков намотана встречно. Это уменьшает число эффективных проводников в пазу, нейтрализуя действие такого же количества витков, намотанных в основном направлении, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из общего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: 81-2-22 = 37.
Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных 37 число встречно намотанных витков должно быть: (81-37)/2 = 22.
Бифилярную катушку можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг оси параллельной пазам. Правая и левая стороны повернутой секции при этом меняются местами.
Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключать от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя. Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках, привода стиральных машин и т. д. Пускозащитное реле, установленное на холодильниках и стиральных машинах, включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.

Источник: energo.ucoz.ua