Преобразователь частоты для асинхронного двигателя
Асинхронный двигатель сегодня является одним из самых распространенных и востребованных устройств, приводящих в движение приводы машин различного типа, которые используются в разных областях производства.
Однако, несмотря на высокую популярность и оправданность использования, асинхронные двигатели имеют существенный недостаток. Это превышающий номинальный в 5-7 раз пусковой ток и отсутствие возможности регулировать скорость вращения ротора.
Назначение частотного преобразователя для асинхронных двигателей
Чтобы исключить перечисленные отрицательные влияния на промышленное оборудование, была создана возможность заменить механическое регулирование на электронное. Достичь этого удалось в результате серьезных исследовательских работ.
Так, появился преобразователь частот нового класса, предназначенный специально для асинхронных двигателей.
Это частотные преобразователи для асинхронных двигателей с широтно-импульсным управлением (ШИМ), которые снижают пусковой ток в 4-5 раз. А также позволяют осуществить плавный пуск асинхронного двигателя. При этом управление приводом осуществляется по формуле напряжение/частота.
Преобразователь частоты для асинхронного двигателя позволяет экономить электроэнергию на 50%. Также благодаря использованию частотника становится возможной обратная связь между смежными приводами, следовательно, оборудование самонастраивается на выполнение поставленных задач и изменяются условия работы всей системы.
Принцип работы
Преобразователь частоты для асинхронного двигателя с ШИМ, по сути, является инвентором с двойным преобразованием напряжения.
Входной диодный мост выпрямляет сетевое напряжение 220 или 380В, а затем сглаживает и фильтрует его посредством конденсатора.
Далее посредством входных мостовых ключей и микросхем из постоянного напряжения формируется последовательность электрических сигналов определенной частоты и скважности. Таким образом, на выходе из частотного преобразователя образуются пучки прямоугольных импульсов. Однако, благодаря индуктивности обмоток асинхронного двигателя, они превращаются в напряжение, схожее с синусоидным.
В устройстве также имеется микропроцессор, который дает возможность выполнять такие задачи, как:
- контроль выходных параметров;
- защита системы;
- диагностика состояния подаваемого тока.
Большинство преобразователей частоты для асинхронных двигателей построены на основе двойного преобразования. Среди них выделяют два основных класса:
- с созданием промежуточного звена;
- с непосредственной связью.
Каждый из видов частотников предназначен для работы в определенных условиях, которые диктуют выбор и целесообразность использования в конкретной ситуации.
Выпрямители управляемого типа обеспечивают непосредственную связь, отпирая группы тиристоров, и обеспечивают подвод напряжения к обмотке электродвигателя.
Преобразование напряжения в данном случае осуществляется посредством вырезания синусоид из входного тока. При этом полученная частота находится в диапазоне от 0 до 30Гц. Для регулируемых приводов этот вариант использования не подходит.
Для использования незапираемых тиристоров необходимо создание более сложной системы управления, которая повышает стоимость создаваемой цепи.
В противном случае, синусоида при входе может привести:
- к появлению гармоник;
- к потерям в электродвигателе;
- к перегреву электродвигателя;
- к снижению показателя крутящего момента;
- к образованию сильных помех.
Помимо этого, компенсаторы повышают стоимость цепи, габаритов и веса, а потери снижают КПД.
К другому классу относятся цепи питания, где используются частотные преобразователи для асинхронных двигателей с промежуточным звеном. Они обеспечивают преобразование электрического тока в два этапа.
На первом этапе синусоидное напряжение с постоянной частотой и амплитудой преобразуется посредством выпрямления. При этом применяются специальные фильтры, сглаживающие показатели.
На втором этапе посредством инвертора на выходе происходит преобразование энергии с изменяемым показателем частоты и амплитуды.
- к снижению КПД;
- к ухудшению показателей соотношения массы и габаритов устройства.
Частотные преобразователи для асинхронных двигателей, работающие как тиристор, имеют следующие преимущества:
- обеспечивают возможность работы в системах с большими показателями тока;
- такая система предназначена для использования там, где имеются большие показатели тока;
- они устойчивы к большим нагрузкам и импульсному воздействию;
- обеспечивают высокий КПД, достигающий 98 %.
Мы перечислили все особенности каждого типа преобразователей частоты для асинхронных двигателей, теперь, попробуем выяснить, на чем следует основываться при выборе частотника.
Критерии выбора
Преобразователи частоты для асинхронных двигателей следует использовать лишь с учетом их технических характеристик.
Важными характеристиками, на которые необходимо обратить внимание, являются следующие:
- Диапазон напряжения подаваемого тока. Сегодня существуют модели частотников, работающие при различном напряжении. Диапазон напряжения может составлять 100-120В или 200-240В. Исходя из этого показателя, следует выбирать преобразователь.
- Номинальная мощность электродвигателя, которая измеряется в кВт.
- Полная мощность электродвигателя.
- Номинальный выходной ток.
- Выходное напряжение, которое часто не превышает показатель напряжения источника питания, а иногда бывает и меньше.
- Диапазон выходной частоты.
- Допустимая сила тока на выходе.
- Частота тока при входе.
- Максимальный показатель отклонений, который допускается при определенных условиях.
Эти параметры указываются в документации к преобразователю, и их необходимо учитывать. В противном случае, например, если не учтен показатель напряжения подаваемого тока, то устройство выйдет из строя.
Способы подключения
Выбор варианта подключения преобразователя частоты для асинхронных двигателей зависит от цели его применения, например, необходимости обеспечения более легкого пуска или необходимости регулировки частоты вращения двигателя.
Наиболее простой схемой подключения является установка автомата отключения перед частотником. При этом автомат должен быть рассчитан на номинальную величину напряжения, потребляемого электродвигателем.
Поскольку большинство двигателей питаются от трехфазной сети, то можно выбрать трехфазный автомат, который обеспечивает отключение двух фаз в случае, когда происходит короткое замыкание в одной из фаз.
При использовании однофазного частотного преобразователя для асинхронных двигателей, следует установить автомат, рассчитанный на утроенный ток в одной фазе.
После установки автомата, следует осуществить подключение фазных проводов к клеммам двигателя, а также подключить в цепь тормозной ресивер. После частотного преобразователя в цепь устанавливается вольтметр, который измеряет напряжение на выходе.
Для того чтобы осуществить правильное подключение частотного преобразователя, следует изучить инструкцию, которая прилагается к моделям частотников. Точное соблюдение инструкции позволит легко осуществить подключение преобразователя частоты к электродвигателю.
На что обратить внимание при выборе модели?
При выборе модели частотника необходимо уделить внимание некоторым нюансам, которые окажут влияние на правильность выбора:
- Метод управления — скалярный или векторный. Большинство моделей имеют векторный метод управления, однако при некоторых режимах работы их можно переключить на скалярный метод управления. Новые частотники без векторного метода управления не производятся.
- Мощность потребляемой электроэнергии — это важный показатель, который необходимо учитывать при выборе модели частотного преобразователя.
- Входное напряжение — это показатель, указывающий на то, при каком напряжении преобразователь частоты способен работать без сбоев. Следует понимать, что входное напряжение должно быть постоянным, в противном случае, при его падении, частотник остановится, а при повышении — выйдет из строя вся система оборудования.
- Диапазон регулировки является тем показателем, который важен для двигателей, работающих при высоких показателях номинальной частоты.
- Наличие пульта управления, который позволяет вводить необходимые значения.
- Гарантийный срок. Это показатель, который косвенно указывает на надежность техники. Если модель имеет значительный срок гарантии, то можно быть уверенным, что производитель позаботился о высоком качестве. Однако следует помнить, что гарантийным случаем не является выход из строя преобразователя, который был использован при подаче тока с неправильным номинальным показателем.
Все перечисленные нюансы необходимо учитывать при выборе частотного преобразователя для асинхронных двигателей.
Сегодня на рынке представлено большое количество преобразователей частоты, среди них можно выделить ряд моделей высокого качества, которые имеют привлекательную стоимость.
Это модель Omron MX2, оснащенная встроенным блоком управления.
Модель Vacon NXL,
Модель ESQ 2000.
Они отличаются высокой номинальной мощностью, компактными габаритами и небольшим весом, а также достойными эксплуатационными характеристиками.
- Любая информация, переданная Сторонами друг другу при пользовании ресурсами Сайта (http://www.techtrends.ru), является конфиденциальной информацией.
- Пользователь дает разрешение Администрации Сайта на сбор, обработку и хранение своих личных персональных данных, а также на рассылку текстовой и графической информации рекламного характера.
- Стороны обязуются соблюдать данное соглашение, регламентирующее правоотношения связанные с установлением, изменением и прекращением режима конфиденциальности в отношении личной информации Сторон и не разглашать конфиденциальную информацию третьим лицам.
- Администрация Сайта собирает два вида информации о Пользователе:
— персональную информацию, которую Пользователь сознательно раскрыл Администрации Сайта в целях пользования ресурсами Сайта;
— техническую информацию, автоматически собираемую программным обеспечением Сайта во время его посещения.
Источник: techtrends.ru
Частотные преобразователи для асинхронных двигателей
- 2 commentsПринцип работы Сентябрь 11, 2018
До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.
>
Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.
Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.
По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.
Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.
В мир современной автоматизации технологических процессов, это весомый аргумент.
Устройство частотных преобразователей
Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.
За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.
По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.
Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.
Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.
В промышленном исполнении можно встретить два основных типа частотных преобразователей:
Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.
Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.
Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.
Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.
Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.
Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.
Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.
Разница типов сигналов управления
При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.
Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.
Выбор мощности частотного преобразователя
Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.
Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.
Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.
Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.
Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.
В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.
Электромагнитная совместимость преобразователей частоты
При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.
По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.
Источник: chistotnik.ru
Частотные преобразователи. Работа и устройство. Типы и применение
Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.
Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.
Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.
Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.
Виды
По конструктивным особенностям частотные преобразователи делятся:
- Индукционные.
- Электронные.
Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.
Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей.
При этом реализуются два возможных принципа управления:
- По определенной зависимости скорости от частоты тока.
- По способу векторного управления.
Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.
Конструктивные особенности
Рис. 1
Частотные преобразователи имеют в составе основные модули:
- Выпрямитель.
- Фильтр напряжения.
- Инверторный узел.
- Микропроцессорная система.
Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.
Выпрямитель
Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.
>
Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.
Фильтр напряжения
Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.
Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.
Инверторный модуль
Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.
Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.
Микропроцессорная система
В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.
Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.
Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.
Принцип действия
Основа работы инвертора состоит в двойном изменении формы электрического тока.
Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.
Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.
Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.
Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:
- Амплитудная.
- Широтно-импульсная.
Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.
При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.
Принцип подключения ключей на транзисторах
Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.
Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:
- Радиопомехи.
- Помехи от электрооборудования.
Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.
Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:
- Ввод связи.
- Контроллер.
- Карта памяти.
- Программа.
- Дисплей.
- Тормозной прерыватель с фильтром.
- Охлаждение схемы вентилятором.
- Прогрев двигателя.
Схемы подключения
Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.
Частотные преобразователи для 3-фазной сети рассчитаны на 380 вольт, их подают на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.
Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.
Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.
При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.
Применение
Частотные преобразователи используются в устройствах с необходимостью регулировки скорости двигателя.
- Приводы насосов. Уменьшает потери тепла и воды на 10%. Снижает количество аварий, защищает электродвигатели.
- Вентиляционные системы. Экономия больше, чем при работе с насосами, так как для запуска мощных вентиляторов применяют мощные приводы агрегатов. Экономия появляется за счет снижения потерь на холостом ходу.
- Транспортеры. Инверторы адаптируют скорость двигателя к скорости технологической системы, которая постоянно изменяется. Мягкий пуск повышает ресурс привода системы, так как нет ударных нагрузок, которые вредят оборудованию.
- Компрессоры.
- Дымососы.
- Центрифуги.
- Лифтовое оборудование.
- Оборудование в деревообработке.
- Робототехника.
Источник: electrosam.ru
Структура частотного преобразователя
Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.
Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.
Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).
Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации.
Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением
неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте :
Для вентиляторного характера момента нагрузки это состояние имеет вид:
При моменте нагрузки, обратно пропорциональном скорости:
Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.
>
Преимущества использования регулируемого электропривода в технологических процессах
Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.
Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.
Перспективность частотного регулирования наглядно видна из рисунка 1
Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.
Структура частотного преобразователя
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Принцип работы преобразователя частоты
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Структура частотного преобразователя
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в звене постоянного тока B, сглаживается фильтром состоящим из дросселя Lв и конденсатора фильтра Cв, а затем вновь преобразуется инвертором АИН в переменное напряжение изменяемой частоты и амплитуды. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления. Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления СУИ обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряженияопределяются параметрами модулирующей синусоидальной функции. Таким образом, на выходе преобразователя частоты формируется трехфазное переменное напряжение изменяемой частоты и амплитуды.
Источник: www.artesk.ru
Частотный преобразователь в асинхронных двигателях, принцип работы
Чаще всего преобразователи частоты используются для асинхронного двигателя, но встречаются они и в бытовой технике. Несмотря на распространённость, они обладают не только преимуществами, но и недостатками, устранять которые приходится, используя дополнительные приборы. Все преобразователи выполняют важную функцию, и представить хоть одно производство без частотника для асинхронных двигателей невозможно.
Сферы применения устройства
Преобразователь частоты – это специальное устройства, которое устанавливается на мощные электродвигатели. Их главное предназначение – изменение частоты поступающего тока. Как известно, ток, который поступает из розетки имеет частоту, она равна 50 Гц. Для того чтобы ускорить или наоборот замедлить двигатель, эту частоту можно изменять. Роль, которую играет частотник – изменение частоты тока.
Самый яркий пример – это стиральные машины, они имеются у каждого в доме, для ускорения частоты вращения барабана частотник электродвигателя увеличивает частоту тока, чтобы уменьшить количество оборотов, производится обратное действие. Также их используют для плавного запуска мощных двигателей: современные частотники, могут изменять колебание тока от 1-800 Герц.
Принцип работы частотника
В основе работы частотника лежит инвертор с двойным преобразованием. Преобразователь работает по следующей схеме:
- Вначале переменный синусоидальный ток (220-380 В), поступающий в инвертор выпрямляется. Для выпрямления используется диодный мост.
- После ток поступает на группу конденсаторов, где он фильтруется и сглаживается.
- Далее, мостовые ключи из биполярных транзисторов (IGBT, БТИЗ) и управляющие микросхемы принимают отфильтрованный ток и формируют из него трёх или однофазную широтно-импульсную модуляцию с требуемыми параметрами.
- На выходе получается синусоидальный ток с уже изменёнными характеристиками, синусоидальность обеспечивается индуктивностью обмоток.
Более подробно весь процесс изображён на следующей схеме:
Применение в асинхронных двигателях
Асинхронные двигатели превосходят по мощности и производительности обычные электродвигатели, но при этом они обладают рядом недостатков. Основным из них является необходимость увеличения номинальной мощности при запуске в 5-7 раз, а также то, что для регулирования скорости вращения ротора необходимо использовать специальные устройства. Увеличение потребляемой мощности при запуске порождает скачки внутри сети и ударные импульсы, в свою очередь, это негативно влияет на срок службы любого асинхронного двигателя.
Для решения всех проблем сразу был разработан асинхронный преобразователь частоты. Их использование удобно тем, что работа частотника происходит в автоматическом режиме, и поэтому контроль за токами происходит постоянно. Это устройство уменьшает пусковые токи, тем самым не создавая перегрузок в сети и не нанося вред двигателю, также он позволяет регулировать частоту вращения ротора. Отпадает необходимость в использовании магнитного пускателя. Главные плюсы частотника:
- экономия электроэнергии;
- увеличение долговечности двигателя;
- возможность регулирования работы двигателя;
- обеспечивает обратную связь смежных приводов.
В действительности, это настоящий генератор трехфазного напряжения, при помощи которого можно добиться нужной величины и частоты.
Основные составляющие прибора
В состав любого частотника входит четыре главных модуля:
- выпрямитель;
- блок фильтрации напряжения;
- инверторный узел;
- система управления на базе микропроцессора.
Все эти модули соединены блоком управления, он контролирует системы и отвечает за работу выходного каскада, выдаваемого инвертором. Современные устройства подобного типа также обладают определёнными защитными узлами, которые защищают его от превышения тока и коротких замыканий. Также они оборудованы датчиками слежения за температурой и прочими системами, позволяющими отслеживать отклонения от нормы при его работе.
Несмотря на то что частотник должен выпрямлять ток и держать постоянную его частоту, полностью сгладить пульсации он не может, это связано с переменной составляющей и непостоянством тока в самой сети. Для того чтобы полностью убрать эти колебания, используются катушки индуктивности и конденсаторы. Их подключение и настройка происходит, как правило, в системе частотного преобразователя. Катушка сглаживает ток, благодаря своему реактивному сопротивлению, в свою очередь, конденсатор, пропуская через себя ток, выдаёт не переменное, а постоянное напряжение.
Встречаются частотные преобразователи как для однофазных сетей, так и для трехфазных. Также они могут отличаться по типу управления, существуют векторные и скалярные модели. Векторные применяются в тех случаях, когда необходимо жёстко регулировать частоту вращения ротора, второй тип частотников используется на объектах, где нет особой необходимости в жёстком регулировании подаваемой частоты, их можно встретить в вентиляционных системах. Скалярный тип управления используется для однофазных систем, в свою очередь, векторная для трехфазных. Принцип регулирования частоты в обоих случаях остаётся одинаковым.
Источник: 220v.guru