Плавный запуск электродвигателя
- О проекте О проекте
- Главная
- О проекте
- Карта сайта
- Вопрос-ответ
- ПЧ и УПП ПЧ и УПП
- Терминология Терминология
- Низковольтные ПЧ
- Высоковольтные ПЧ
- Низковольтные УПП
- Высоковольтные УПП
- Станции управления
- Аксессуары
- Теория
- Подбор ПЧ и УПП
- Монтаж ПЧ и УПП
- Энергосбережение
- Терминология Терминология
- Пресс-центр Пресс-центр
- Новости сайта
- Интервью
- Статьи
- Мероприятия
- Акции
- Обзор рынка Обзор рынка
- Производители Производители
- ABB
- Advanced Control Indastrial Equipment
- AuCom Electronics Ltd
- B&R
- Baumuller
- Bosch Rexroth
- Control Techniques
- Danfoss
- Delta Electronics
- Easy Drive
- Eaton
- EKF
- Emotron AB
- ERMAN
- ESQ
- EURA Drives
- Fuji Electric
- GE
- Gefran Siei
- Grandrive
- Hitachi
- Hyundai Heavy Industries
- IC Electronics
- IDS Drive
- INNOVERT
- Inovance
- INSTART
- Invertek drivers
- Invt
- Jacky Enterprise
- Keb
- Lenze
- LS
- Micno
- Mitsubishi Electric
- Omron
- Parker
- Powtran
- Prostar
- Rockwell Automation
- Schneider Electric
- Sew Eurodrive
- Siemens
- Tecorp Electronics
- Toshiba
- Vacon
- Weg
- Yaskawa
- Битек
- Веспер Автоматика
- Вниир
- Горнозаводское Объединение
- Ижевский Радиозавод
- Овен
- Оптимэлектро
- Приводная техника
- Силиум
- Стройтехавтоматика
- Технорос
- Триол
- ЧЭАЗ-ЭЛПРИ
- ЭКРА
- Электровыпрямитель
- Электрозавод
- Электротекс
- Элсиэл
- Эрасиб
- Эффективные Системы
- Серии
- Рынок
- Производители Производители
- Купить Купить
- Поставщики Поставщики
- КосПА
- ONI
- Danfoss
- Веспер
- EKF
- Инжиниринг
- Поставщики Поставщики
- Библиотека Библиотека
- Каталоги
- ГОСТ и ТУ
- Видео
- Контакты Контакты
- Обратная связь
- Сотрудничество
- Реклама на сайте
- Вакансии
- Ответственность
- Главная
- Статьи
- Особенности плавного пуска электродвигателей
Общепромышленные двигатели, применяемые в составе приводных механизмов конвейеров, насосов, воздуходувок и компрессоров, все имеют одно общее свойство: при пуске двигателя в обмотках возникает повышенный токи, которые могут в шесть раз превышать значение номинального тока двигателя. Повышенные значения тока негативно влияют на компоненты двигателя, снижая его ресурс, а также снижает качество электроэнергии питающей сети, особенно для больших электродвигателей начиная с 1 кВт и более. Именно поэтому для двигателей этого размера часто используют плавного пуска.
Идея плавного пуска заключается в постепенном повышении питающего напряжения, пока двигатель не выйдет на установившийся режим. Это снижает пусковой ток, но также снижает пусковой крутящий момент двигателя. Регулировка питающего напряжения двигателя осуществляется путем использования, расположенных спина к спине тиристоров либо симисторов на каждой питающей линии переменного тока. Тиристоры приводятся в действие на начальном этапе, таким образом, что их последовательные включения происходят с небольшой задержкой для каждого полупериода. Задержка переключения эффективно наращивает среднее переменное напряжение на двигателе, пока двигатель не выйдет на номинальное напряжение сети. После того, как двигатель достигает своей номинальной скорости вращения, он может быть переключен напрямую (схема байпас). Для управления большими двигателями, как правило, применяются устройства плавного пуска или частотные преобразователи.
Устройству плавного пуска можно противопоставить выключатель и разъединитель полного напряжения, который подключает полное напряжение непосредственно на клеммы двигателя при запуске (прямой пуск). Такой способ пуска, ограничивается маленькими мощностями двигателя, где повышенный пусковой ток не проблема.
Некоторые мягкие пускатели могут также обеспечивать функцию плавного останова для применений, где резкая остановка может вызвать привести к каким либо нарушениям и поломкам. Например для насосов, где быстрая остановка может принести к гидроудару в системе или для конвейерных лент, где материал может получить повреждения, если полотно остановить слишком быстро. При плавном останове используется то же принцип переключения силовых полупроводников, что и для плавного пуска.
Тиристоры в УПП пропускают часть напряжения в начале переходного процесса и постепенно увеличивают его в соответствии с установленным временем разгона. Тиристоры могут также осуществлять мягкую остановку, уменьшая напряжение двигателя в соответствии с установленным временем замедления.
Отдельный вид мягкого пуска, часто применяемый на трехфазных двигателях получил название «звезда-треугольник». Принцип заключается в переключении обмоток двигателя соединенных звездой в соединение треугольником когда двигатель выходит на установившейся режим и достигает номинальной частоты вращения. В данном случае устройство обычно состоит из контакторов на каждого из трех фаз, реле перегрузки и таймера, который задает продолжительность времени. Пусковой ток при таком методе составляет около 30% от значений при прямом пуске, а крутящий момент составляет около 25% от пускового момента при подключении напрямую. Данный способ пуска работает только тогда, когда есть на двигателе, в момент пуска, есть нагрузка. Однако также стоит учесть, что слишком нагруженные двигатели не будут иметь достаточный крутящий момент для разгона до номинальной скорости скорости.
Устройства плавного пуска, как правило, используется с асинхронными моторов. Но они также могут обеспечить определенные преимущества при питании синхронных двигателей. Причина в том, что многие синхронные двигатели в момент разгона ведут себя как асинхронные. То есть, существует задержка между вращающимся электрическим полем и положения ротора.
Скольжение наблюдаемое в переходных процессах пуска синхронного двигателя, как и в случае с асинхронными двигателями, синхронных двигателей может вызвать повышенные токи статора (в пять-восемь раз превышающий номинальный ток).
Как для синхронных так и для асинхронных двигателей, высокие значения пусковых токов статора и ротора приводит к снижению коэффициента мощности. Коэффициент мощности и, следовательно, эффективность повышается, когда электродвигатель ускоряется до его номинальной скорости вращения. В связи с этим, следует также отметить, что некоторые УПП могут служить в качестве регулятора напряжения двигателя, в зависимости от нагрузки, при наличии соответствующего котнтроллера. Контроллер отслеживает коэффициент мощности двигателя, который зависит от нагрузки двигателя. На малых нагрузках, коэффициент мощности является достаточно низким, соответственно контроллер уменьшает напряжение двигателя и, таким образом, ток электродвигателя.
Выбор устройства плавного пуска
Большинство применений, к которым относятся устройства плавного пуска можно разделить на основные категории использования: насосы, компрессоры и конвейеры. Есть несколько правил правильного выбора для каждой из этих категорий.
Время разгона для плавного пуска является настраиваемой величиной. Типичный время запуска для большинства применений составляет от 5 до 10 сек. Длительные периоды времени, как правило, можно найти в насосных и компрессорных системах, где есть высокая вероятность возникновения гидроударов.
Типичное УПП уменьшает крутящий момент двигателя и ток во время пуска. Устройства переключения «звезда-треугольник» выполняет то же самое, но с помощью переключения обмоток двигателя из звезды на треугольник в соответствующее время.
В большинстве случаев напряжение пуска составляет 30% от номинального напряжения сети. Винтовые компрессоры и конвейеры иногда начинают на более высоких уровнях (возможно 40%).
Устройства плавного пуска, как правило, выбираются той же мощности, что и двигатели. Для тяжелых режимов работы, распространенной практикой является выбор устройства плавного пуска по мощности на один типоразмер больше мощности электродвигателя.
Источник: www.chastotnik.pro
Обзор устройств плавного пуска –применение, принципы действия, разновидности, схемы включения
Проблема пускового тока
Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.
В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.
Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.
Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.
>
Как обеспечить плавный пуск двигателя
Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.
1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.
2. Схема «Звезда – Треугольник». Двигатель при этом должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запускается в два этапа. На этапе разгона обмотки включаются «звездой». Таким образом получается, что 380 В подается на схему, которая для нормальной работы требует напряжения порядка 660 В. Поскольку двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается сравнительно плавным. На втором этапе обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа – разгон получается ступенчатым, а пусковые токи могут принимать большое значение.
3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).
Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.
Как работает устройство плавного пуска
Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.
В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.
При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.
Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.
В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.
При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.
Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.
В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.
Схемы включения
Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.
Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.
Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.
С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.
Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.
Пример схемы
Рассмотрим для примера схему включения УПП ABBPSTX.
В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.
Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.
При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.
Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.
Защита
В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.
В состав защиты могут входить:
- Мотор-автомат (автомат защиты двигателя),
- Полупроводниковые предохранители, либо защитные автоматы с характеристикой «В»,
- Тепловое реле,
- Короткое либо межвитковое замыкание в обмотках двигателя,
- Контактор аварийной цепи, выключающий питание УПП при срабатывании внутреннего аварийного реле либо нажатии кнопки «Аварийный останов».
Пример неправильной установки защиты, в результате которой произошел пожар:
Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.
Двухфазные УПП
В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.
Это решение имеет право на жизнь, и главный плюс таких УПП – цена.
Однако, имеются минусы, о которых стоит знать:
- При запуске и торможении происходит перекос фаз, который приводит к дополнительному нагреву двигателя,
- Пусковой ток по «прямой» фазе почти не уменьшается,
- Постоянное присутствие фазного напряжения на двигателе представляет опасность для персонала.
Заключение
УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.
Источник: promtechautomat.ru
Плавный пуск электродвигателя своими руками
Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.
>
В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.
Зачем нужны УПП?
Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.
Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.
Преимущественные особенности применения схемы с устройством плавного пуска (УПП):
- снижение стартового тока;
- уменьшение затрат на электроэнергию;
- повышение эффективности;
- сравнительно низкая стоимость;
- достижение максимальной скорости без ущерба для агрегата.
Как плавно запустить двигатель?
Существует пять основных методов плавного пуска.
- Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.
- С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.
- Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
- Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.
- Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.
Регулятор оборотов коллекторного двигателя
Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.
Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.
Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.
Заключение
УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.
Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.
Источник: electricdoma.ru
Производство своими руками плавного пуска для электродвигателя
Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.
Электродвигатели и нагрузки — проблема?
Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.
Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.
При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.
При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.
Для чего нужен плавный пуск?
Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:
- в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
- старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
- вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
- не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
- ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.
Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.
Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.
Видео: Плавный пуск, регулировка и защита колектор. двигателя
Варианты систем плавного пуска электродвигателей
Система «звезда-треугольник»
Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.
Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.
Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником
Электронная система плавного пуска электродвигателя
Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.
>
С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.
В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:
- основная – понижение пускового тока до трёх–четырёх номинальных;
- снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
- улучшение параметров пуска и торможения;
- аварийная защита сети от перегрузок по току.
Однофазная схема пуска
Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;
Двухфазная схема пуска
Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;
Трехфазная схема пуска
Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.
Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.
Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.
Плавный пуск своими руками
Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.
Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.
Источник: elektro.guru
Плавный пуск асинхронного электродвигателя – назначение устройства и схема его подключения
То, что в асинхронных электродвигателях с короткозамкнутым ротором при пуске появляются высокие токи, известно. Теоретически эта проблема решена довольно-таки давно (плавные способы пуска известны), но вот на практике эти технологии использовались редко. В настоящее время многое изменилось. Научно-технический прогресс принес в последнее время много разработок в электронной технике, благодаря чему стали производиться компактные устройства, очень эффективные и удобные, которые обеспечивали плавный пуск асинхронного электродвигателя. Их еще называют софтстартеры.
Эти устройства помогает запускать асинхронный электродвигатель без рывков и нагрузки, что обеспечивает долгосрочную эксплуатацию и самого двигателя, и исполнительных механизмов, которые напрямую соединены с валом мотора. Обычно в качестве таких устройств выступают редукторы разных модификаций.
- Если в схеме подключения не использовать устройство плавного пуска, то пусковой момент приводит к постепенному разрушению двигателя, особенно быстро выходят из строя подшипники.
- Но и не только подшипники. Высокое пусковое напряжение и ток, превышающие номинальный в 6-10 раз, становятся причиной износа изоляции обмоток и пробивки медного провода, подгорают контакты.
- К тому же подводящий питающий кабель рассчитывается с учетом именно максимального значения пускового тока. А это повышение его сечения, а, значит, повышение стоимости проводки, плюс перерасход самой электроэнергии.
- При этом необходимо учитывать тот факт, что электродвигатель при пуске забирает на себя большое напряжение, что создает «просадку» напряжения в смежных электрических сетях. А это негативно влияет на технологическое оборудование в этих сетях, потому что напряжение в них резко падает. Это, во-первых, приводит к некорректной работе оборудования, во-вторых, снижает срок его эксплуатации.
- В добавлении можно сказать, что пуск асинхронного двигателя создает достаточно серьезные электромагнитные помехи, что в свою очередь становится причиной нарушения работы электронных приборов и оборудования. При этом необязательно чтобы эти приборы были запитаны в электрическую схему электродвигателя. Начинают плохо работать даже те, которые просто рядом расположены с ним.
И еще есть один момент, который иногда не учитывается. Если при пусковом моменте асинхронный электродвигатель перегрелся или вообще сгорел, то используемая в его конструкции трансформаторная сталь теряет свои технические характеристики, слишком высока температура перегрева. Если такой двигатель отремонтировать, то гарантированно, что его мощность будет ниже номинальной приблизительно на треть. Поэтому такие моторы устанавливать на старое место не рекомендуется. Он просто не потянет нагрузки, для которых агрегат предназначен.
Вот такие негативные моменты есть у асинхронного двигателя, который работает без устройства плавного пуска.
Назначение устройства плавного пуска
Начнем с того, что это устройство объединяет в себе две функции: плавного пуска и торможения. Производители комплектуют их еще дополнительными опциями: связь с автоматикой и защитными функциями.
Теперь схема пуска асинхронного двигателя. В основе этого процесса лежит постепенный подъем напряжения, что обеспечивает медленный разгон вращения вала мотора (ротора). Это и приводит к снижению пусковых токов. Есть в этом деле три параметра, которые определяют плавный пуск. Это:
- Начальное напряжение. Оно должно быть меньше номинального на 40-70 процентов.
- Время, за которое вал электродвигателя разгонится до номинальной скорости. Здесь процесс происходит так: сначала подается напряжение скачком, которое доводится до начального, после чего уже напряжение увеличивается плавно до номинального.
- Время торможения.
Применяя эту технологию пуска с установкой и подключением софтстартеров, можно отказаться от системы реле, включателей, магнитных пускателей и контакторов, и при этом создается надежная защита от перегрузок и перегревов, от пробивки изоляции и возникновения электромагнитных помех. Но самое главное, что конструкция устройства плавного пуска асинхронных двигателей очень проста. Их легко подсоединить к двигателю, главное точно подобрать прибор по параметрам. Вот схема такого подключения:
Как правильно выбрать устройство плавного пуска
- В основе выборе лежит тот самый максимальный пусковой ток. В устройстве величина тока должна быть больше пускового у электродвигателя.
- Обязательно надо обратить внимание, сколько пусков может за час выдерживать устройство. Обычно этот показатель в паспорте софтстартера указывается. Поэтому его придется подбирать под технологию, в которой установлен сам электродвигатель. Где-то его будут включать один раз в день, а где-то за час могут включить и отключить несколько раз.
- И, конечно, это питающее напряжение. В паспорте устройства плавного пуска этот показатель обязательно указывается.
В принципе, это все, что можно было бы сказать о таком эффекте, как плавный пуск асинхронного двигателя.
Источник: onlineelektrik.ru