Устройства плавного пуска электродвигателя: возможности, виды и стоимость решений
Назовите код «КП-5» и получите скидку 7% на оборудование производства компании «Эффективные Системы».
Устройство плавного пуска позволяет решить проблему «просадок» напряжения, снизить вероятность перегрева и повысить срок службы электродвигателей.
Подобрать устройство плавного пуска асинхронного двигателя и рассчитать его стоимость можно с помощью онлайн-калькулятора.
Стоимость устройства плавного пуска зависит от сервисных функций, схемы регулирования и величины нагрузки на двигатель.
Контроллеры-оптимизаторы асинхронных электродвигателей обладают функцией энергосбережения и коррекции коэффициента мощности.
Скидки и акции позволят существенно сэкономить на покупке оборудования для управления электроприводом и энергосбережением.
Главные недостатки электродвигателя проявляются в момент его запуска — высокий пусковой ток и значительная нагрузка на механические узлы приводимого в действие оборудования. Решение этих проблем — устройство плавного пуска. О том, как его выбрать и какие задачи оно решает, мы расскажем в данной статье.
Современный мир — это мир высоких скоростей, а значит — двигателей… внутреннего сгорания, ядерных, пневматических… и наконец, электродвигателей — постоянного и переменного тока, синхронных и асинхронных. В промышленности наибольшее распространение получил асинхронный двигатель переменного тока. Он появился в конце XIX столетия и стал активно использоваться уже в начале ХХ века благодаря простоте устройства, неприхотливости в эксплуатации, работе от сети трехфазного переменного тока, относительно высокому КПД и экологической безопасности. Однако сегодня в своем традиционном исполнении он перестал отвечать требованиям рынка: из-за крайне высокого пускового тока асинхронного двигателя в момент его запуска создается очень высокая нагрузка на питающую сеть, что приводит к падению напряжения в последней, а значит — к ухудшению качества электрической энергии. В итоге повышается вероятность возникновения проблем в работе всех устройств и приборов, подключенных к этой сети. Кроме того, из-за резкого рывка при запуске сокращается срок службы механических узлов приводимого в действие оборудования. Для устранения этих недостатков и были созданы устройства плавного пуска (УПП).
УПП: функции и возможности
Итак, что же такое УПП, какую пользу оно может принести? Для решения проблемы необходимо сначала выявить ее причину. В нашем случае она одна: обычно напряжение питания на двигатель подается скачкообразно с 0 В до номинального напряжения питания. В силу того, что обмотка статора двигателя имеет малое омическое сопротивление, а рабочее индуктивное сопротивление двигателя устанавливается только в момент, когда устройство выходит в «режим», в промежуток времени с момента включения в сеть до выхода двигателя в «режим» сопротивление очень мало и сила тока сильно возрастает. Отсюда и получаем высокий пусковой ток, который достигает 6–8-кратного (а порой и 10–12-кратного) увеличения номинального тока потребления.
С учетом этого запуск электродвигателя возможен только в том случае, если мощность источника тока достаточна. На практике такое бывает не всегда, и зачастую мощности источника питания недостаточно для того, чтобы обеспечить столь высокий ток. В результате напряжение в питающей сети падает, как еще говорят, «подсаживается». Чрезмерное увеличение тока и «подсаживание» напряжения не проходит бесследно, и с этим приходится бороться, что выливается в дополнительные финансовые затраты.
Другой недостаток пуска напрямую от сети — высокие нагрузки на механические узлы — возникает по той же причине: скачкообразная подача напряжения питания. Поскольку ток пуска высокий, крутящий момент может достичь 150–200% от номинального, при этом приводимые механизмы двигателя в момент запуска покоятся, а механические узлы испытывают многократные нагрузки. Для предотвращения поломок производитель или потребитель вынужден закладывать дополнительный запас прочности, что опять же сказывается на стоимости оборудования.
Ключ к решению проблемы — плавные подача напряжения и разгон двигателя до номинальных режимов. Эти задачи и призвано решить устройство плавного пуска (УПП).
Использование УПП позволяет:
- уменьшить пусковые токи;
- снизить вероятность перегрева электродвигателей;
- повысить срок их службы;
- устранить рывки в механической части электропривода в момент запуска электродвигателей, а также гидравлические удары в трубопроводах и задвижках в момент пуска и остановки насосов.
Принцип действия устройства плавного пуска асинхронного электродвигателя
Простейшее УПП основано на свойстве полупроводниковых приборов — тиристоров (а они и являются основным конструктивным элементом УПП) — проводить ток после подачи на соответствующий вход управляющего напряжения и «закрываться» при прохождении значения тока через ноль. Тиристоры соединяются по встречной (симисторной) схеме для каждой из фаз трехфазной системы. В нужные моменты времени на управляющие электроды всех тиристоров подается управляющее напряжение, «открывающее» их, благодаря чему напряжение на силовых клеммах электродвигателя оказывается возможным регулировать. Так как крутящий момент электродвигателя является функцией квадрата приложенного напряжения, появляется возможность регулировать и механические нагрузки в электроприводе. Возможность регулирования напряжения позволяет также плавно останавливать электродвигатели, приводящие в действие низкоинерционные нагрузки.
Однако описанные устройства имеют и ощутимые недостатки:
- справляются только с невысокими нагрузками или запуском двигателя вхолостую;
- при увеличении времени запуска появляется опасность перегрева двигателя, полупроводниковые элементы УПП также могут перегреться и выйти из строя;
- снижение напряжения влечет за собой снижение крутящего момента на валу.
Более совершенные устройства характеризуются отсутствием указанных недостатков и делятся по принципу действия на амплитудные и частотные. Последние дороже и сложнее в установке/наладке, но их использование оправдывает себя при эксплуатации в условиях, когда для решения поставленных задач необходимо изменять скорость вращения электродвигателя.
Виды УПП
Можно выделить два основных типа УПП:
- Регуляторы напряжения без функции обратной связи.
- Регуляторы напряжения с функцией обратной связи.
Рассмотрим каждый из них подробнее.
Регуляторы напряжения без обратной связи. Наиболее распространенный вид устройств плавного пуска. Регулировка здесь может производиться по двум или трем фазам, но только по заранее заданной пользователем программе, в которой указывается время и начальное напряжение запуска. Пусковой ток и момент уменьшаются, есть возможность плавного останова, но не регулируется момент в зависимости от нагрузки на двигатель.
Регуляторы напряжения с обратной связью. Усовершенствованный вариант предыдущей группы. Контролируют фазовый сдвиг между напряжением и током в обмотках статора и используют полученные данные для регулировки напряжения на клеммах двигателя таким образом, чтобы запуск гарантированно произошел с наименьшим значением пускового тока и достаточным значением механического крутящего момента. Также полученные данные используются для работы защит от перегрузки, дисбаланса фаз и пр.
Применение устройств плавного пуска
УПП могут применяться везде, где используется электродвигатель, однако выбор нужно производить исходя из нагрузки двигателя и частоты запусков.
Если нагрузка на двигатель невелика, а его запуск производится редко (например, в шлифовальных станках, некоторых вентиляторах, роторных дробилках, вакуумных насосах), подойдут регуляторы без обратной связи либо вообще регуляторы пускового момента.
Если высокая нагрузка сочетается с частым и инерционным запуском (как в ленточной пиле, центрифуге, сепараторе, распылителе, лебедке, вертикальном конвейере), целесообразным будет выбор регуляторов напряжения с обратной связью, возможно, с запасом по номиналу.
Цены на софтстартеры
В последние годы цены на софтстартеры весьма нестабильны. В связи с падением курса рубля стоимость на импортные и многие отечественные изделия, выпускающиеся под российскими брендами в Юго-Восточной Азии либо изготавливающиеся в России из импортных комплектующих, только за последние год–полтора увеличилась минимум в 2,5 раза.
В зависимости от характеристик стоимость УПП может начинаться от 16 тысяч рублей и достигать почти 600 тысяч рублей, но в последнем случае максимально допустимый номинальный ток может доходить до 710 А.
УПП российского производства
Существуют разные УПП российского производства. Традиционные УПП используют амплитудные методы управления. Из-за этого они запускают оборудование исключительно в холостом или слабо нагруженном режиме. Более продвинутый вариант — контроллеры-оптимизаторы «ЭнерджиСейвер», которые используют фазовые методы управления, поэтому запускают электроприводы, характеризующиеся тяжелыми и очень тяжелыми пусковыми режимами «номинал в номинал». Это позволяет производить запуски чаще и корректировать потребляемую мощность, попутно обеспечивая решение задачи снижения энергопотребления.
Контроллеры-оптимизаторы «ЭнерджиСейвер» производятся компанией «Эффективные системы» (на рынке — с 2002 года), имеющей собственную службу технической поддержки и сервисный центр. Специалисты компании «Эффективные системы» знают об оборудовании для управления электроприводом все, поскольку занимаются только этим направлением. Здесь вы можете выбрать модель УПП, максимально отвечающую вашим требованиям, а также сделать индивидуальный заказ.
>
Источник: www.kp.ru
Обзор устройств плавного пуска –применение, принципы действия, разновидности, схемы включения
Проблема пускового тока
Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.
В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.
Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.
Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.
Как обеспечить плавный пуск двигателя
Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.
1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.
2. Схема «Звезда – Треугольник». Двигатель при этом должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запускается в два этапа. На этапе разгона обмотки включаются «звездой». Таким образом получается, что 380 В подается на схему, которая для нормальной работы требует напряжения порядка 660 В. Поскольку двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается сравнительно плавным. На втором этапе обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа – разгон получается ступенчатым, а пусковые токи могут принимать большое значение.
3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).
Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.
Как работает устройство плавного пуска
Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.
В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.
При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.
Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.
В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.
При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.
Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.
В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.
Схемы включения
Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.
Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.
Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.
С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.
Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.
Пример схемы
Рассмотрим для примера схему включения УПП ABBPSTX.
В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.
Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.
При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.
Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.
Защита
В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.
В состав защиты могут входить:
- Мотор-автомат (автомат защиты двигателя),
- Полупроводниковые предохранители, либо защитные автоматы с характеристикой «В»,
- Тепловое реле,
- Короткое либо межвитковое замыкание в обмотках двигателя,
- Контактор аварийной цепи, выключающий питание УПП при срабатывании внутреннего аварийного реле либо нажатии кнопки «Аварийный останов».
Пример неправильной установки защиты, в результате которой произошел пожар:
Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.
Двухфазные УПП
В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.
>
Это решение имеет право на жизнь, и главный плюс таких УПП – цена.
Однако, имеются минусы, о которых стоит знать:
- При запуске и торможении происходит перекос фаз, который приводит к дополнительному нагреву двигателя,
- Пусковой ток по «прямой» фазе почти не уменьшается,
- Постоянное присутствие фазного напряжения на двигателе представляет опасность для персонала.
Заключение
УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.
Источник: promtechautomat.ru
Плавный пуск электродвигателя своими руками
Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.
В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.
Зачем нужны УПП?
Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.
Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.
Преимущественные особенности применения схемы с устройством плавного пуска (УПП):
- снижение стартового тока;
- уменьшение затрат на электроэнергию;
- повышение эффективности;
- сравнительно низкая стоимость;
- достижение максимальной скорости без ущерба для агрегата.
Как плавно запустить двигатель?
Существует пять основных методов плавного пуска.
- Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.
- С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.
- Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
- Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.
- Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.
Регулятор оборотов коллекторного двигателя
Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.
Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.
Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.
Заключение
УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.
Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.
Источник: electricdoma.ru
ПУСК АСИНХРОННОГО ДВИГАТЕЛЯ
Асинхронные электрические двигатели с короткозамкнутым ротором благодаря своей крайней простоте получили широкое распространение, особенно в трехфазных сетях, где им не требуются дополнительные пусковые или смещенные по фазе обмотки.
При правильной эксплуатации асинхронный электродвигатель становится практически вечным – единственное, что в нем может потребовать замены, это подшипники ротора.
Однако ряд особенностей асинхронных двигателей определяет специфику их пускового режима: отсутствие обмотки якоря означает отсутствие противоЭДС индукции в момент включения обмоток статора, а следовательно – высокий пусковой ток.
Если для маломощных электрических двигателей это не критично, то в промышленных электродвигателях пусковые токи могут достигать очень высоких значений, что приводит к просадкам напряжения в сети, перегрузкам подстанций и электропроводки.
ПРЯМОЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ
Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.
Включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.
Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора.
Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.
Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя.
В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.
ПЛАВНЫЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ
Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя.
Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.
Подобный способ плавного пуска имеет очевидные недостатки:
Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.
Усложнение пуска под нагрузкой.
Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.
Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов.
Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:
В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает.
В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.
Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален. Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.
Ускоренный пуск (кик-старт).
Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.
В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.
Останов на выбеге.
При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.
Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.
Линейное снижение напряжения.
>
Применяется для более плавной остановки двигателя. Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.
Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.
Для снижения нагрузок при остановке применяется управляемое снижение напряжения:
- вначале ток снижается минимально;
- затем кривая начинает снижаться круче.
Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.
При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.
Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.
ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК
Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.
Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.
Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:
- При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
- Снижение напряжения и тока является фиксированным.
- Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.
ПУСК ЭЛЕКТРОДВИГАТЕЛЯ ЧЕРЕЗ ЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ
Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя. По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:
- входное напряжение в нем выпрямляется;
- затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.
Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.
Как осуществляется плавный пуск через частотный преобразователь?
В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения. Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.
Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Источник: eltechbook.ru
Плавный пуск электродвигателя
Плавный пуск предназначен для выполнения запуска и дальнейшего разгона, торможения и остановки высоковольтных электродвигателей синхронного и асинхронного типа, мощностью более 10 кВт, а также для сохранения и повышения их эксплуатационных качеств.
Необходимость плавного пуска
Традиционное использование прямого пуска для электродвигателя высокого напряжения, чревато резкими просадками напряжения в электрической сети.
Так, многократный бросок пускового тока, способствует созданию ударного электромагнитного момента, передаваемого по валу двигателя на редуктор и всю рабочую машину.
В обмотке статора создаются значительные динамические усилия, которые вызывают дефекты в виде смещения листов друг относительно друга, что чревато повреждением изоляции и приводят к капитальному ремонту двигателя.
В результате частых прямых пусков, как следствие, происходят повреждения редукторов и пробой изоляции обмоток.
Достаточно часто происходит обгорание выводов в “борно” (клеммах) электродвигателя и повреждение соединений между катушками обмоток двигателя.
Механические части агрегата быстро изнашиваются. Все эти неисправности заставляют выполнять узлы механизмов с высоким запасом прочности.
Принцип действия и особенности электронного плавного пуска
Действие плавного пуска основано на использовании принципа управления изменением фазового угла открытия тиристоров. Устройство работает с использованием высоковольтных тиристоров, подключенных встречно-параллельно, с током от 350 до 2600А. Каждой фазе соответствует тиристор положительного и отрицательного полупериода.
Тиристоры плавно увеличивают напряжение электродвигателя. Ток в третьей фазе, без управления, равен сумме токов фаз, находящихся под управлением. После разгона двигателя, тиристоры могут управляться, а напряжение подходит к выводам двигателя. Во время работы проводить регулировку напряжения необязательно, выполняется шунтирование тиристоров с помощь байпасных контактов.
Обеспечение обратной связи, предназначенной к управлению пусковым током и для защиты электродвигателя и электроустановки, выполняется трансформаторами тока.
Фазовая отсечка служит для получения величины напряжения наиболее эффективной для питания двигателя во время пуска. Фазовая отсечка настраивается в зависимости от величины напряжения до момента пуска и до расчетного напряжения электрического двигателя при помощи регулировок.
Значение силы тока электрической машины пропорционально напряжению, питающему ее. Этим достигается уменьшение величины пускового тока в зависимости от уменьшения, подаваемого к электродвигателю питающего напряжения.
Момент вращения электродвигателя по отношению к величине напряжения уменьшается пропорционально квадрату напряжения.
Возможности плавного пуска
Для УПП характерно сохранение параметров электрооборудования (напряжение, ток, вращающий момент) в момент пуска в безопасных пределах.
Плавный или безударный пуск исключает высокие ударные пусковые токи, способствует увеличению надежности оборудования. Снятие ограничения на число запусков и остановов электродвигателей высокого напряжения позволяет рационально использовать электрооборудование с учетом тарифа на электроэнергию.
В технологическом плане, плавный пуск дает возможность получить значительный выигрыш. Так, например, УПП используют на месторождениях нефтедобычи, например, на (КНС) кустовых насосных станциях, для запуска двигателей насосных агрегатов, применяемых для закачки воды в пласт. Благодаря отсутствию пусковых ограничений, УПП помогает поддерживать необходимое пластовое давление и позволяет максимально эффективно распределить нагрузки между насосными установками, внутри станции и со смежными КНС. Также плавный пуск используется для запуска асинхронных двигателей на ДНС (дожимная насосная станция), для подачи откачиваемой нефти в основной нефтепровод.
Преимущества плавного пуска
1. Плавный пуск рекомендован для запуска высоковольтных синхронных и некоторых типов асинхронных электродвигателей большой мощности. Это машины, которые обладают значительными статическими нагрузками и большой инерционной скоростью останова.
2. УПП обеспечивает частотный запуск двигателя до синхронной скорости с определенными значениями пускового времени и с ограничением тока с уровнем менее 1,5 от номинального тока электродвигателя.
3. Плавный пуск осуществляет синхронизацию и включение электродвигателя в сеть.
4. Наличие в УПП «умного» блока управления дает возможность осуществлять автоматическую работу оборудования. Цифровые каналы связи передают сведения о настоящем состоянии агрегата на высший уровень системы управления технологией рабочего процесса.
В управлении применяются микроконтроллерные системы. Для современных систем плавного пуска характерно адаптивное управление ускорением. Чтобы это было возможно, системы автоматики производят анализ предыдущих процессов запуска и остановки агрегата, после чего УПП автоматически адаптирует процесс к избранному профилю, соответственно назначению.
Важно знать и учитывать необходимое время пуска так называемый коэффициент трудности пуска. Чем больше время пуска, тем выше нагрев тиристоров, которые рассчитаны на длительный режим работы при нормальном пуске, определенной температуре окружающего воздуха (до 40оС) и заданном количестве включений.
Диапазон использования УПП.
В рамках использования устройства плавного пуска находятся самые разнообразные функции.
1. Осуществляя пуск и остановку двигателя, используется нелинейный способ, им можно управлять увеличением напряжения, в этом случае кривая напряжения будет зависеть от потребляемой нагрузки.
2. Быстрый останов двигателя осуществляется с помощью постоянного тока, он используется в функции торможения.
3. Максимальный импульсный момент способствует плавному разгону электрического двигателя.
Источник: tex-servis.ru