Какой ток потребляет двигатель из сети при пуске и работе
В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток . При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:
I н = P н/ ( √3 U н х η х с osφ) ,
где P н – номинальная мощность двигателя в кВт, U н – напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) – паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также – Какие паспортные данные указываются на щитке асинхронного двигателя.
Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В – 3,4 А.
Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению “два ампера на киловатт”, т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.
Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).
В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток , который может быть в 3 – 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).
Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока – I пуск/ I ном. Кратность пускового тока – одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока – 6, пусковой ток равен 20 х 6 = 120 А.
Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.
Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей
Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).
Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 – 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.
В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.
Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.
Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник
Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя
В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры) . Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.
Источник: electricalschool.info
Основные характеристики асинхронных электродвигателей
1. Виды электродвигателей
Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.
Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.
>
Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.
Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам
Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей
различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).
2. Основные характеристики электродвигателей
Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.
Существует восемь различных режимов работы, из них основными можно считать:
· продолжительный номинальный режим;
· кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;
· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.
Номинальной мощностью Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.
Номинальная частота вращения nн вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.
Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:
Мн — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);
Рн — номинальная мощность, кВт;
nн — номинальная частота вращения, об/мин.
Номинальный к.п.д. hн электродвигателя — отношение его номинальной
мощности к мощности, потребляемой им из сети при номинальном напряжении:
Рн — номинальная мощность, кВт;
Uн — номинальное (линейное) напряжение, В;
Iн — номинальная сила тока, А;
cosφн — номинальный коэффициент мощности.
Номинальной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.
Максимальный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.
Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.
Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).
Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.
Сила тока холостого хода I в значительной мере определяется силой намагничивающего тока I0Р. приближенно можно считать I = I0P . Для машин
основного исполнения относительное значение силы тока холостого хода
I = (0,2—0,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в таблице 2.1.
Таблица 2.1. Токи холостого хода для двигателей основного исполнения
Среднее значение токов холостого хода
(в долях от силы номинального тока) при синхронной частоте вращения, об/мин
Источник: eti.su
Характеристики асинхронных двигателей
Материал из Руководство по устройству электроустановок
Общие правила проектирования электроустановок |
|
Подключение к распределительной сети высокого напряжения |
Подключение к низковольтной распределительной сети |
Руководство по выбору архитектуры сети высокого и низкого напряжения |
Распределение в системах низкого напряжения |
Защита от поражения электрическим током |
Выбор сечения и защита проводников |
Низковольтная распределительная аппаратура |
Защита от перенапряжений в низковольтных сетях |
Энергоэффективность в электрических сетях |
Компенсация реактивной мощности и фильтрация гармоник |
Управление гармониками |
Особые источники питания и нагрузки |
Электроустановки жилых помещений и коттеджей |
Электромагнитная совместимость (ЭМС) |
>
Содержание
Потребление тока
Номинальная мощность (кВт, Pn) двигателя указывает его номинальную эквивалентную механическую выходную мощность. Полная мощность (кВА, Ра), подаваемая на двигатель, зависит от полной мощности, КПД двигателя и коэффициента мощности:
Полный ток нагрузки Ia, подаваемый на двигатель, рассчитывается по следующим формулам:
где
Ia : полный ток (А)
Pn : номинальная мощность (кВт)
U : междуфазное напряжение для 3-фазного двигателя и напряжение между зажимами для 1-фазного двигателя (В). 1-фазные двигатели могут подсоединяться на фазное или линейное напряжение
η : КПД, т.е. выходная мощность (кВт)/ входная мощность (кВт)
cos φ : коэффициент мощности, т.е. входная мощность (кВт)/входная мощность(кВА)
Сверхпереходный ток и уставка защиты
- Пиковое значение сверхпереходного тока может быть крайне высоким. Обычно это значение в 12-15 раз превышает среднеквадратическое номинальное значение Inm. Иногда это значение может в 25 раз превышать значение Inm.
- Выключатели, контакторы и термореле рассчитываются на пуски двигателей при крайне высоких сверхпереходных токах (сверхпереходное пиковое значение может в 19 раз превышать среднеквадратическое номинальное значение Inm).
- При внезапных срабатываниях защиты от сверхтоков при пуске это означает выход пускового тока за нормальные пределы. В результате могут достигаться предельные значения параметров распределительных устройств, срок службы может укорачиваться и даже некоторые устройства могут выходить из строя. Во избежание такой ситуации необходимо рассмотреть вопрос о повышении номинальных параметров распределительных устройств.
- Распределительные устройства рассчитываются на обеспечение защиты пускателей двигателей от КЗ. В зависимости от риска, таблицы показывают комбинации выключателя, контактора и термореле для обеспечения координации типа 1 или 2.
Пусковой ток двигателя
Хотя рынок предлагает двигатели с высоким КПД, на практике их пусковые токи приблизительно такие же, как у стандартных двигателей.
Применение пускателей с соединением треугольником, статических устройств для плавного пуска или регулируемых приводов позволяет снизить значение пускового тока (например, 4 Ia вместо 7,5 Ia).
Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели
Как правило, по техническим и финансовым соображениям выгоднее снижать ток, подаваемый на асинхронные двигатели. Это может обеспечиваться за счет применения конденсаторов, без влияния на выходную мощность двигателей.
Применение этого принципа для оптимизации работы асинхронных двигателей называется «повышением коэффициента мощности» или «компенсацией реактивной мощности».
Как обсуждается в Главе Компенсация реактивной мощности и фильтрация гармоник, полная мощность (кВА), подаваемая на двигатель, может значительно снижаться путем использования параллельно подключенных конденсаторов. Снижение входной полной мощности означает соответствующее снижение входного тока (так как напряжение остается постоянным).
Компенсация реактивной мощности особенно рекомендуется для двигателей с длительными периодами работы при пониженной мощности.
Как указывается выше,
Поэтому, снижение входной полной мощности (кВА) приводит к увеличению (т.е. улучшению) значения cos φ.
Ток, подаваемый на двигатель, после компенсации реактивной мощности рассчитывается по формуле:
где: cos φ – коэффициент мощности до компенсации, cos φ’ – коэффициент мощности после компенсации, Ia – исходный ток.
Рис. A4 ниже показывает (в зависимости от номинальной мощности двигателя) стандартные значения тока для нескольких значений напряжения питания.
Источник: ru.electrical-installation.org
Как рассчитать потребляемую мощность двигателя
В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.
Понятие мощности электродвигателя
Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.
На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.
Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:
КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:
>
Мощность и нагрев двигателя
Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.
В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.
Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:
Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:
Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.
Расчет мощности при помощи счетчика электроэнергии
Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.
Источник: tehprivod.su
Vladimirus-team
Расчет номинального тока электродвигателя
- Получить ссылку
- Электронная почта
- Другие приложения
Расчет номинального тока электродвигателя онлайн
Ток двигателя I = P /(1,73 *U *кпд* Cosф);
Номинальные данные электродвигателя указываются на заводском щитке или в другой технической документации.
- 1,73 это корень из трех;
- U (Вольт) – линейное напряжение;
- Р (Ватт) – Мощность асинхронного двигателя
- КПД (η) – коэффициент полезного действия, берется из паспортных данных, или в интервале 0.8 -0.9;
- Cos(Ф) – коэффициент мощности берется из паспортных из паспортных данных, или в интервале 0.8 – 0.9.
- I (Aмпер) ток;
Поделиться в соц сетях:
- Получить ссылку
- Электронная почта
- Другие приложения
Комментарии
бред – номинальный ток электродвигателя мощностью 55 кВт получается 1 Ампер.
Здравствуйте. Вы учли, что мощность в данном калькуляторе, нужно указывать в Ваттах.
Т.е, В поле мощность указываем 55000, а не 55.
Отправить комментарий
Популярные сообщения из этого блога
Калькулятор индекса формы тела – ABSI – индекс формы тела
ABSI – индекс формы тела – калькулятор индекса формы тела. Оценка нормальности тела при помощь ИФТ – Индекс формы тела.
ABSI ( A Body Shape Index) — является метрикой для оценки последствий для здоровья лишней массы тела. Включение в расчёт окружности талии делает BSI лучшим показателем риска для здоровья от избыточного веса, чем стандартный индекс массы тела.
ABSI является строгим статистическим индикатором риска преждевременной смерти – каждый шаг повышения индекса ассоциирован с 13% – ым ростом показателя. Среди участников исследований, чей ABSI находился в верхних 20-процентных пределах значений, риск преждевременной смерти оказался на 61% выше, чем у тех, чей индекс был в нижних 20-процентных пределах.
ABSI – индекс формы тела – онлайн калькулятор индекса формы тела. Вес:
A Body Shape Index (Индекс формы тела):
Body mass index (BMI) (Индекс массы тела):
Чем ниже значение ABSI, тем меньше риск для здоровья.
Приведенные ниже данны…
Формула Миффлина-Сан Жеора для расчета калорий
Формула основного обмена Миффлина-Сан Жеора (mifflin st jeor) Формула основного обмена Миффлина-Сан Жеора выведена в 2005 году и по утверждению Американской Диетической Ассоциации (АДА) на сегодняшний день позволяет наиболее точно рассчитать сколько калорий тратит организм здорового взрослого человека в состоянии покоя.
Расчет базового обмена веществ: Формула Миффлина-Сан Жеора для женщины: ВОО =10 * вес(кг) + 6.25 * рост (см) – 4.92 * возраст – 161; Формула Миффлина-Сан Жеора для мужчины: ВОО = 10 * вес (кг) + 6.25 * рост (см) – 4.92 * возраст + 5;
Рассчитав по формуле Миффлина-Сан Жеора величину основного обмена веществ (ВООВ), можно вычислить и примерное количество калорий, необходимых в сутки для поддержания веса тела с учетом уровня физической нагрузки.
Для этого умножаем полученное число на коэффициент физической активности.
Коэффициенты физической активности (К)
Минимальные нагрузки (сидячая работа) – К=1.2Немного дневной активности и легкие упражнения 1-3 раза в неделю – К=1.37…
Индекс Эрисмана – индекс пропорциональности грудной клетки.
Индекс Эрисмана – определяет пропорциональность развития грудной клетки По формуле:
IE = Q – L/2; Где: IE – индекс Эрисмана (см)Q – окружность грудной клетки в паузе (см)L – рост (см). Норма: ≈+5.8 см для мужчин ≈+3.3 см для женщин
Если разница равна или превышает данные цифры, это говорит о хорошем развитии грудной клетки.
Низкие или отрицательные значения свидетельствуют об узкогрудии. Индекс Эрисмана рассчитать онлайн Пол:
Мужской
Женский
Источник: vladimirus-team.blogspot.com