Как пользоваться мегаомметром
Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6 , «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.
Принцип действия мегаомметра
Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.
В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.
Устройство мегаомметра
Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.
Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» – земля, «Л» – линия и «Э» – экран.
Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».
Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.
Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.
Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Влияние наведенного напряжения
Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.
Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.
Источник: electric-220.ru
Мегаомметр. Виды и устройство. Работа и применение. Особенности
Мегаомметр – специализированный прибор, предназначенный для выполнения замеров сопротивления. В отличие от омметра, данное устройство получило название вследствие особенностей функционального назначения устройства. «Мега» означает тысяча, а это значит, что прибор применяется с целью нахождения сопротивлений высоких значений. Поэтому устройство обеспечивает генерацию напряжений, благодаря которым и осуществляется измерение.
В большинстве случаев мегаомметр необходим для выяснения величин сопротивления в электроизоляции кабелей, электроцепей, трансформаторных установок, электродвигателей и других электрических установок. Изоляция представляет материал, который препятствует протеканию электротока в ненужном направлении. Необходимость проверки изоляции токопроводящих частей вызвана тем, чтобы не было короткого замыкания, возгорания, а также поражения людей электротоком.
Виды
Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания.
- Аналоговые. Их часто именуют стрелочными устройствами. Главная их особенность в том, что в них встроена индивидуальная динамо-машина, которая запускается с помощью кругового движения рукоятки. Также предусмотрена шкала со стрелкой. Сопротивление измеряется благодаря магнитоэлектрическому действию. Стрелка крепится на оси, на которой также находится рамочная катушка, на которую действует магнитное поле постоянного магнита. Когда ток протекает по катушке, то наблюдается отклонение стрелки на некоторый угол. Величина угла зависит от напряжения и силы тока. Возможность подобного измерения определяется законом электромагнитной индукции.
>
К преимуществам стрелочного устройства относятся надежность и неприхотливость. В то же время прибор является морально устаревшим, ведь данный агрегат имеет существенные размеры и большую массу.
- Цифровые. Данные измерители наиболее распространены. В них установлен мощный генератор импульсов, который работает с помощью полевых транзисторов. Подобные устройства оснащаются источником питания, они производят преобразование переменного тока в постоянный. В качестве источника тока может использоваться сеть либо аккумулятор. Измерение сопротивления осуществляется с помощью усилителя посредством сравнения падения напряжения в электроцепи с сопротивлением эталона.
Показатели отражаются на экране. В большинстве случаев предусмотрено сохранение результатов в памяти, дабы в дальнейшем была возможность сравнить данные. Электронное устройство имеет малый вес и небольшие габариты, благодаря чему можно выполнять разные электрические измерения. Но, чтобы работать с таким устройством, требуется достаточно высокая квалификация пользователя.
Кроме того, устройства отличаются друг от друга генерируемым напряжением и пределами измерений:
- Рабочее напряжение достигает 500 Вольт и предела в 500 МОм;
- 1000 Вольт и предела в 1000 МОм.
- 2500 Вольт и предела в 2500 МОм.
Также устройства отличаются классом точности. Например, устройство М4100, которое пользуется значительной популярностью у профессионалов, функционирует с погрешностью максимум 1%. Ф4101 выделяется погрешностью не выше 2,5%. Данные показатели следует учитывать в особенности там, где нужна большая точность определения сопротивления. Подбирать средство для испытаний и тестирования электросистемы следует с учетом сопротивления и иных показателей.
Устройство
Мегаомметр любого вида имеет следующие элементы:
В стрелочных устройствах напряжение создается динамомашиной, которая заключена в корпус. Динамомашина запускается благодаря пользователю, который крутит ручку устройства с установленной частотой. В большинстве случаев частота вращении должна составлять двум оборотам в секунду. Цифровые устройства питаются от электросети, но в то же время могут работать от батареек или аккумулятора. Функционирует устройство благодаря закону Ома, который определяет силу тока как отношение напряжения к сопротивлению. Устройство мерит электроток, протекающий между двумя включенными объектами, к примеру, жила-земля, 2 жилы и так далее. Измерения осуществляются эталонным напряжением, оно известно наперед. Мегаомметр, учитывая напряжение и ток, легко определяет сопротивление изоляционного слоя, которое измеряет.
В качестве источника постоянного напряжения выступает генератор постоянного тока. Чтобы менять пределы измерения, предусмотрен тумблер-переключатель, который дает возможность коммутировать разные резисторы. Благодаря этому можно менять режим работы и выходное напряжение.
Принцип действия
Каждый материал, который не проводит ток, имеет сопротивление изоляции. Со временем она устаревает, либо повреждается. При этом повреждения могут возникать внезапно, иногда их невозможно увидеть. Однако процесс может привести к выходу из строя применяемого оборудования, могут возникнуть замыкания и пожары. К тому же отсутствие изоляции может повлечь появлению на электрическом оборудовании напряжения, которое будет опасно для жизни человека.
Именно для таких измеренй применяется мегаомметр, он создает на измерительных выводах напряжение необходимой величины, чтобы измерить ток, который проходит по цепи. Изначально для генерации напряжений применялись электромеханические машины. Необходимо было вращать рукоятку, дабы генератор вырабатывал напряжение. Главное достоинство таких устройств в том, что им не нужна сеть либо батарея. Измерительная система здесь аналоговая, применяется стрелка, которая демонстрирует показания на шкале.
Также существуют электронные приборы и микропроцессорные устройства. Последние включают измерители тока и напряжения, жидкокристаллический дисплей, микроконтроллер, клавиатуру, источник питания, импульсный преобразователь напряжения. С клавиатуры задается значение испытательного напряжения, после чего генератор создает импульсы тока. Проводятся измерения, полученное значение применяется для вычисления измеряемого сопротивления. Устройство имеет несколько диапазонов измерений, которые переключаются автоматически с помощью изменения коэффициента передачи.
Активный выпрямитель выполняет преобразование переменного тока в постоянный. Напряжение постоянного тока при измерении сопротивления преобразуется в дискретную форму посредством преобразователя частоты напряжения, после чего оно направляется в микроконтроллер. В микроконтроллере происходит обработка команд, которые идут с клавиатуры. Далее идет управление генератором, автоматическим переключением диапазонов. Микроконтроллер вычисляет и запоминает значения измеряемых сопротивлений.
В большинстве случаев в устройстве применяется двухстрочный жидкокристаллический дисплей. Стандартные сервисные функции экрана включают индикатор разряда батареи и выключателя питания в случае отсутствия манипуляций. Корпус выполняется из прочного диэлектрического пластика, на панели спереди располагается клавиатура и индикатор гнезда, куда подключается измерительные щупы. На торце корпуса находится разъем, предназначенный для подключения адаптера. Питание устройства осуществляется от встроенного аккумулятора. Подзарядка батареи осуществляется от бытовой электрической сети в 220 вольт.
Применение
Мегаомметр находит следующее применение:
- Измерение изоляции электрических приборов, а также установок во время наладки и обслуживания в промышленных и лабораторных условиях.
- Измерение сопротивления разъемов, изоляционных материалов, в том числе обмоток электромашин. В большинстве случаев устройство используется для проверки изоляции.
- Измерение сопротивлений с целью проведения расчетов коэффициентов абсорбции, а также поляризации.
При работе мегаомметр создает напряжение, которое может быть опасным для пользователя. Поэтому следует проявлять осторожность. Для начала нужно обесточить оборудование или кабели, в которых нужно провести измерение сопротивления. В промышленности для работы с устройством допускаются только специалисты, которые имеют группу электробезопасности не меньше третьей. Во время измерения изоляции оборудования, к примеру, электрических двигателей, необходимо отключить их от сети. Затем цепи нужно заземлить. С этой целью к шине заземления подключается многожильный провод с хорошей изоляцией.
Источник: tehpribory.ru
Как устроен и работает мегаомметр
Для измерения сопротивления изоляции, в электротехнике используют особый электроизмерительный прибор «мегаомметр». В отличие от обычного омметра, мегаомметр предназначен для измерения высоких сопротивлений – от сотен килоом до десятков мегаом. Поэтому в процессе работы с данным прибором, напряжение на его щупах может составлять от 100 вольт до 2500 вольт.
Мегаомметр включается в цепь параллельно тому ее участку, сопротивление которого требуется узнать, обычно этот участок представляет собой пространство между двумя проводниками, изолированными друг от друга слоем изоляции. Щупы присоединяются каждый к своему проводнику: первый («З») и второй щупы («Л») прибора присоединяются между землей (и первым проводником) и вторым проводником, а третий щуп («Э»), если он есть, соединяется при необходимости с экраном кабеля.
Принцип работы мегаомметра очень похож на принцип работы амперметра, с учетом известной зависимости величины тока от напряжения и сопротивления (закон Ома). Мегаомметры, соответственно, так же как и амперметры, – бывают аналоговыми и цифровыми.
В аналоговых приборах показания отображаются стрелкой на отградуированной в мегаомах шкале. В цифровых мегаомметрах — в виде тех же цифр, только на дисплее. Приборы обоих видов позволяют диагностировать проводку, проверять состояние изоляции обмоток трансформаторов и электродвигателей, тестировать различные электроизоляционные материалы, проводить сервисное обслуживание различных электрических машин и установок и т.д.
Аналоговый мегаомметр относится к приборам мгнитоэлектрической системы, где по существу измеряется ток, проходящий через измеряемое сопротивление, и практически сравнивается с током через внутреннюю цепь прибора (если система двухкатушечная).
>
Взаимное отклонение катушек, через которые внутри прибора течет эталонный и измеряемый ток, либо отклонение катушки с измеряемым током в магнитном поле постоянного магнита, приводит к отклонению связанной с катушкой стрелки прибора, показывающей сопротивление, так как оно, по закону Ома, обратно пропорционально току.
Поскольку напряжение известно, то измерив ток через цепь, легко тут же вычислить ее сопротивление и отобразить результат на шкале. Существуют аналоговые мегаомметры, питаемые встроенной динамомашиной — крутишь ручку — прибор работает, на его щупы при этом подается необходимое напряжение.
Цифровой прибор работает несколько иначе. Здесь нет никаких физически отклоняющихся катушек, зато есть источник точно калиброванного постоянного напряжения, который через схему цифрового амперметра включается последовательно цепи, сопротивление которой нужно узнать. В зависимости от характеристик исследуемой цепи, напряжение на щупах прибора будет разным, начиная от 100 вольт, заканчивая всеми 2500 вольтами, если измеряется сопротивление высоковольтной цепи.
Это напряжение выбирается специальным переключателем или кнопками на панели прибора. Есть, безусловно, нормативы, согласно которым цепи разного рабочего напряжения проверяются соответствующим напряжением на щупах мегаомметра. Цифровые мегаомметры могут питаться от батареек, аккумуляторов, индивидуальных блоков питания.
При измерении сопротивления мегаомметром опираются на следующие нормы:
Электрические цепи с рабочим напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, при этом сопротивление цепи не должно быть меньше 0,5 МОм. Полупроводниковые приборы, входящие в диагностируемую цепь, для предотвращения их выхода из строя, должны быть зашунтированы.
Электрические цепи с рабочим напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт.
Электрические цепи с рабочим напряжением от 100 до 380 вольт испытываются напряжением мегаомметра от 500 до 1000 вольт. Что касается осветительной проводки, она испытывается напряжением 1000 вольт, при этом сопротивление не должно быть меньше 0,5 МОм.
Электрические цепи с рабочим напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра от 1000 до 2500 вольт. К оборудованию такого типа относятся распределительные устройства, щиты и токопроводы. Сопротивление секции цепи (каждая секция промеряется отдельно) при этом не должно быть менее 1 МОм.
К работе с мегаомметром на предприятиях допускается только обученный персонал с группой допуска по электробезопасности не ниже третьей, так как во время функционирования прибора на его щупах присутствует высокое напряжение, опасное для человеческого организма. Щупы прибора имеют поэтому изолированные ручки с опорными выступами. Но даже несмотря на изолированные ручки, работы с мегаомметром всегда проводятся в защитных резиновых перчатках.
Как проводятся измерения мегаомметром
Приступая к проведению измерительных работ, первым шагом проверяют прибор, замыканием его щупов друг о друга — исправный прибор покажет ноль, а затем размыкают — мегаомметр должен показать бесконечность.
Прежде чем начать работу непосредственно с цепью, сначала всегда проверяют чтобы поблизости не было людей, которые могли бы во время проведения измерений случайно коснуться исследуемой цепи.
С проводов, к которым предстоит подключить мегаомметр, сначала снимают рабочее напряжение, то есть обесточивают цепь.
Затем кратковременно соединяют каждую из ее частей с заземлителем — чтобы нейтрализовать любой остаточный статический заряд на проводах.
Один из проводов заземляют, к нему же присоединяют щуп «З» мегаомметра, затем присоединяют второй щуп ко второму (не заземленному) выводу тестируемой цепи. Снимают показания.
После — отсоединяют прибор, кратковременно заземляют не заземленный прежде вывод исследуемой цепи, с тем чтобы нейтрализовать остаточный статический заряд на нем. Таким же образом разряжают выводы мегаомметра. После этого заземление (и переносной заземлитель) можно убрать.
Источник: electricalschool.info
Как пользоваться мегаомметром для измерения сопротивления изоляции кабеля?
Чтобы измерить значение сопротивления, а также выявить дефекты кабелей и проводок электрических сетей, используют специально разработанное для этого приспособление мегаомметр.
В названии аппарата ясно распознаются три слова:
“Мега”, ” Ом”, и ”Метр”, где первое слово подразумевает значение измеряемой величины, второе — единицу измерения и третье производное от слова “измерить”.
В основе рабочего процесса мегаомметра лежат принципы закона Ома, касающиеся участков электрической цепи, поэтому любая модификация прибора содержит во внутренней части корпуса:
- измерительную систему тока (амперметр);
- набор выходных клемм;
- генератор постоянного напряжения.
Конструктивные особенности генераторов напряжения могут изменяться в довольно широких границах. В основу их производства положены простые ручные динамо-машины, которые использовались раньше. Современные генераторы оснащены встроенными или внешними источниками питания.
Показатели выходной мощности и напряжения генератора могут варьироваться в пределах нескольких интервалов, а также иметь единственную, фиксированную величину.
Соединительные провода с одной стороны подключают к клеммам мегаомметра, а с другой фиксируют в измеряемой цепи при помощи “крокодилов”. Это специальные приспособления, предназначенные для более надежного соединения.
С помощью амперметра, который встроен внутри агрегата, измеряют показатели проходящего по цепи тока.
Обратите внимание! с известным и проградуированным напряжением генератора калибруются также единицы сопротивления, то есть на шкале, расположенной на измерительной головке, показаны мегаомы, килоомы или и те и другие вместе.
На шкале одного из самых надежных проверенных аналоговых мегаомметров, выпущенных около пятидесяти лет назад М4100/5, расположено две шкалы, что позволяет выполнить замер на двух границах. Новые технологии отображают показания сопротивления более наглядно. На цифровой дисплей выводится уже обработанный цифровой сигнал.
Стрелочный мегаомметр и его устройство
Упрощенная электрическая схема, характерная для аналоговых приборов оснащена такими составными частями:
- генератором постоянного тока;
- измерительной головкой, которая состоит из двух взаимодействующих рамок (рабочая и противодействующая);
- тумблером-переключателем между пределами измерений, который позволяет регулировать работу различных резисторных цепочек, предназначенных для коррекции выходного напряжения и режимов работоспособности головки;
- токоограничивающего резистора.
В свою очередь диэлектрический герметичный прочный корпус данного агрегата оснащен:
- ручкой для комфорта в транспортировке;
- складной портативной рукояткой генератора, вращая которую вырабатывают напряжение;
- рычагом, с помощь которого переключают режимы измерения;
- выходными клеммами, предназначенными для работоспособности всей схемы (к клеммам подключаются соединительные провода).
У большинства моделей мегаомметров имеются три выходные клеммы для подключения. Каждая из них имеет название: земля (З), линия (Л) и экран (Э).
З и Л предназначены для замеров сопротивления изоляции. Э – для того чтобы ликвидировать влияние токовых потерь в случае проведения замера в области двух параллельно проходящих жил кабелей.
В комплектацию прибора входит специальный измерительный провод с характерной конструкцией и экранированным концом, оборудованным двумя клеммами. На одной из них есть маркировка в виде буквы “Э”. Что это значит? Это значит: что ее следует подключить к соответствующей клемме, расположенной на мегаомметре.
Для мегаомметров, основанных на работе внешней сети, характерен тот же принцип работы, ручка здесь уже не крутится, то есть для того чтобы выдать напряжение для испытываемой схемы следует просто удерживать специально предназначенную для этого кнопку. Прибор, способный выдавать не одну комбинацию напряжения, оснащен соответственно несколькими кнопками. Их может быть две, три… даже несколько наборов сочетаний. Такие мегаомметры имеют более сложное внутреннее устройство.
Обратите внимание! Приборы обладают повышенным напряжением, поэтому при их использовании следует соблюдать технику безопасности.
Халатное отношение в работе с высоким уровнем опасности недопустимо. Так как же правильно пользоваться мегаомметром? Из всего вышеописанного вывод напрашивается сам собой:
>
Согласно мерам безопасности при работе с мегаомметром возможность производить замеры получает только специально обученный и подготовленный человек. Его специализация должна позволять проводить ремонтные работы электроустановок, находящихся под напряжением.
При замере испытуемой схемы соединительные провода и клеммы обладают повышенным напряжением, поэтому работа с ними обязывает пользоваться специальными щупами. Они устанавливаются в области измерительных проводов, поверхность которых усиленно изолирована.
Действие остаточного заряда
Работающий генератор мегаомметра выдает напряжение, поэтому контур земли образует разные значения потенциалов, благодаря которым создается подобие ёмкости, обладающей определенным зарядом. После проведения измерений в проводе остается какая-то часть ёмкостного заряда. Как только человек прикасается к данному участку, электрическая травма обеспечена, поэтому постоянное использование дополнительных мер безопасности не будет лишним, а именно:
- переносное заземление;
- изолированная рукоятка;
- прежде чем подключить прибор к испытуемой схеме следует проверить наличие в ней напряжения, а также остаточного заряда с помощью вольтметра.
Как обеспечить безопасность работы с мегаомметром
Работа выполняется исключительно с помощью исправных мегаомметров (проверен и испытан в условиях специально предназначенной для этого метрологической лаборатории). Поверка позволяет владельцу агрегата обладать специальным сертификатом, который дает ограниченное во времени право на проведение работ, то есть до определенного срока годности. После поверки на корпус прибора специалист наносит клеймо, свидетельствующее о проведенной контрольной поверке. Клеймо содержит дату и номер проверяющего. В обязанности владельца мегаомметра входит соблюдение целостности клейма, так как именно оно дает право на проведение последующих измерений. Нет клейма, значит: прибор не исправен!
При выполнении нескольких замеров подряд в десятижильном кабеле следует постоянно использовать переносное заземление, а также снимать остаточный заряд после каждого замера. Быстрая и безопасная работа с мегаомметром обеспечивается путем соединения одного конца заземляющего проводника с контуром заземления до завершения всех работ. Второй конец проводника крепят на изоляционную штангу, которая предназначена для удобства многоразового накладывания заземления, чтобы безопасно снять остаточный заряд.
Как подключить мегаомметр?
Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.
Источник: odinelectric.ru
Мегаомметр
Мегаомме́тр (от мегаом и -метр; устаревшее название — мего́мметр) — электроизмерительный прибор, предназначенный для измерения больших значений сопротивлений. Отличается от омметра тем, что при измерении сопротивления в измеряемую цепь подаётся относительно высокое напряжение (в большинстве моделей — 100, 500, 1000 или 2500 вольт).
Мегомметр — устаревшее название мегаомметра. В соответствии с ГОСТ 2.105 в документах не допускается применение оборотов разговорной речи, техницизмов, произвольных словообразований.
Имеется два типа мегаомметров — индукторный и безындукторный. В индукторных приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор (индуктор) постоянного напряжения с ручным приводом от рукоятки, работающий по принципу динамо-машины. В безындукторных мегаомметрах в качестве источника постоянного высокого испытательного напряжения применяется электронный инвертор с выпрямителем, питаемый от встроенных в прибор аккумуляторов или сменных гальванических элементов.
В качестве индикатора в индукторных мегаомметрах применяются стрелочные логометры, в безындукторных (электронных) — магнитоэлектрический прибор, либо ЖКИ.
Обычно мегаомметр используется для измерения сопротивления изоляции силовых кабелей, электрических разъёмов, межобмоточного сопротивления трансформаторов, электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов (диэлектриков).
По измеренным сопротивлениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).
Достоинством индукторных (механических) мегаомметров является полная автономность и независимость от источников питания. Достоинством многих современных моделей безындукторных (электронных) — возможность автоматического вычисления коэффициента абсорбции, наличие регистров памяти, широкий диапазон установок испытательного напряжения и др.
Измерение мегаомметром сопротивления изоляции
Сопротивление изоляции характеризует её состояние в данный момент времени и может изменяться от влияния внешних условий, так как зависит от ряда факторов, основными влияющими факторами являются температура и влажность изоляции в момент проведения измерения.
В ГОСТ 183-74 нормы на допустимое минимальное сопротивления изоляции не нормируются, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они обычно установливаются в стандартах на конкретные виды машин или в технических условиях на изделия или материалы с обязательным указанием температуры, при которой должны проводиться измерения, и методики пересчета измеренного сопротивления, приведенного к стандартным условиям, если измерения проводились при иной температуре обмоток.
Измерение сопротивления изоляции обмоток устанавливает возможность проведения испытаний изоляции рабочим высоким напряжением без риска электрического пробоя исправной, но имеющей повышенную влажность изоляции.
Измерения проводятся мегаомметром, испытательное напряжение которого выбирается в зависимости от номинального рабочего напряжения испытуемой изоляции. Для устройств с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для устройств с напряжением до 3000 В — мегаомметры на 1000 В, для устройств с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.
О степени увлажнённости изоляции судят не только по значению сопротивления в момент измерения, но и по характеру изменения показания мегаомметра в процессе измерения, которое обычно проводят в течение 1 мин. При этом запись показаний прибора производят спустя 15 с после подачи испытательного напряжения (время достаточное для установления показаний), это сопротивление обозначается R15″ и в конце измерения — через 60 с после начала — обозначение R60″. Отношение этих показаний R60″/R15″ называют коэффициентом абсорбции (КА). Его значение определяет отношение тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции КА близок к 1. При сухой изоляции величина R60″ на 30—50 % больше, чем величина R15″.
Мегаомметром измеряется также сопротивление изоляции термопреобразователей, встроенных в электрические машины, и сопротивление изоляции проводов, соединяющих термопреобразователи с внешними зажимами.
Сопротивление изоляции термопреобразователей измеряется относительно корпуса устройства и относительно обмоток машины. Эта изоляция не предназначена для работы при высоких напряжениях обмоток машины, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.
Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания токов подшипников машинах со стояковыми подшипниками [ прояснить ] .
Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями, либо мегаомметром с переключаемым испытательным напряжением.
Источник: wikipedia.bio