Для чего нужны трансформаторы тока и чем они отличаются от трансформаторов напряжения
Говоря о трансформаторе напряжения, мы имеем ввиду электромагнитное устройство, предназначенное для преобразования переменного напряжения определенной частоты: из высокого — в пониженное, или из низкого — в более высокое, в зависимости от назначения трансформатора, и в конечном счете — от коэффициента трансформации данного экземпляра. При помощи трансформатора напряжения электрическая мощность с достаточно высоким КПД передается из первичной цепи — во вторичную, к которой обычно и подключается нагрузка, то есть потребитель.
Потребитель должен соответствовать трансформатору напряжения по мощности: он может быть меньшей мощности, чем трансформатор в состоянии передать, но никогда не должен быть большей мощности, чем та, на которую спроектирован данный трансформатор, иначе напряжение на вторичной обмотке данного трансформатора начнет уменьшаться, сердечник станет постоянно входить в насыщение, и как обмотки так и сердечник будут перегреваться, КПД трансформатора упадет.
Тем не менее, напряжение на вторичной обмотке трансформатора напряжения, работающего под нагрузкой в штатном режиме или на холостом ходу, всегда остается почти неизменным, по крайней мере с высокой точностью близким к номинальному напряжению вторичной обмотки трансформатора, то есть будет лежать в определенном известном, довольно узком диапазоне. Но при этом ток нагрузки может быть очень разным — варьироваться от нуля до максимально допустимого, в зависимости от импеданса и характера нагрузки, которую трансформатор питает в данный момент.
Трансформатор тока существенно отличается от трансформатора напряжения, как конструктивно, так и по назначению, и по особенностям применения. В то время как первичная и вторичная (или вторичные, если их несколько) обмотки трансформатора напряжения зачастую имеют немалое количество витков, отвечающее коэффициенту трансформации и параметрам сердечника, то первичная обмотка трансформатора тока — это всего один виток, проходящий через окно магнитопровода. Вторичная же обмотка трансформатора тока имеет множество витков, и всегда соединена с активной нагрузкой строго определенного номинала, например с резистором.
Теперь если через первичную обмотку потечет переменный ток определенной величины, то вторичная обмотка, будучи нагружена на постоянную активную нагрузку в виде резистора, создаст на нем падение напряжения, пропорциональное току первичной обмотки (через коэффициент трансформации) и сопротивлению нагрузки. То есть, в зависимости от тока первичной цепи, напряжение вторичной обмотки трансформатора тока может изменяться в широких пределах — от нуля до максимально допустимого.
Очевидно, такой режим отличается от режима работы трансформатора напряжения. Здесь (у трансформатора тока) как правило нет узкого диапазона номинальных напряжений вторичной обмотки, характерного для трансформаторов напряжения. Типичное применение трансформатора тока — измерение тока в цепях, к которым уже подключена нагрузка.
Трансформаторы тока, кроме расширения пределов измерения, изолируют измерительные приборы от высокого напряжения и делают возможным измерение тока в сетях с напряжением выше 1000 В.
Первичная обмотка трансформатора тока имеет изоляцию, рассчитанную на полное рабочее напряжение сети. Для обеспечения безопасности работы обслуживающего персонала (в случае пробоя изоляции) один из зажимов вторичной обмотки и сердечник трансформатора должны быть заземлены.
В отличие от силовых трансформаторов ток вторичной обмотки в трансформаторе тока зависит от тока первичной обмотки (измеряемого тока). Поэтому при работе с трансформатором тока необходимо особенно внимательно следить за тем, чтобы вторичная обмотка была замкнута. Для этого они имеют приспособление для замыкания вторичной обмотки при отключении измерительного прибора.
В тех случаях, когда проводник с током нельзя разъединить, для подключения трансформатора тока применяются трансформаторы в виде токовых клещей. Сердечник таких трансформаторов состоит из двух половин, скрепленных шарниром, что позволяет охватить проводник с током, не разрывая его. Вторичная обмотка замкнута на амперметр, который обычно укрепляется на самом сердечнике.
Итак, трансформатор напряжения предназначен для преобразования электрической мощности переменного тока с целью питания нагрузок различного номинала, рассчитанных на напряжение вторичной обмотки трансформатора.
К трансформаторам напряжения относятся мощные промышленные трансформаторы, трансформаторы подстанций, сетевые трансформаторы, сварочные трансформаторы, трансформаторы в блоках питания некоторых бытовых приборов и т. д. эти трансформаторы могут быть как повышающими, так и понижающими.
Измерительные трансформаторы напряжения предназначены для преобразования высокого напряжения сети в напряжение, доступное для измерения обычными приборами, т. е. для расширения пределов измерения приборов на переменном токе по напряжению.
Трансформаторы тока используются в измерительных целях — там, где необходимо узнать величину переменного тока, текущего по проводу. Трансформатор тока включается в разрыв этого провода, а к его вторичной обмотке подсоединяется амперметр или вольтметр, соединенный с резистором известного номинала. Путем несложных вычислений легко найти величину тока первичной обмотки. Вычисления может производить как человек, так и электроника.
Источник: electricalschool.info
ЭЛЕКТРИЧЕСКИЕ ТРАНСФОРМАТОРЫ
Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.
Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2 , где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1,U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.
ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
>
Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.
ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
ОБЛАСТЬ ПРИМЕНЕНИЯ
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.
В зависимости от назначения трансформаторы делят на:
Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.
Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.
Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Источник: eltechbook.ru
Устройство трансформатора, принцип работы и применение
Даже непрофессионалы знают, что существует такое устройство, как трансформатор. О нем также снимают мультфильмы. Да, да. Какой малыш не знает о трансформерах? Правда, это сильно измененная и одушевленная форма, но суть остается та же. В автомобилестроении есть такое понятие, как гидротрансформатор — устройство, передающее силу двигателя на коробку передач. Однако речь пойдет об устройстве — электротрансформаторе.
Назначение составных частей
Само слово «трансформация» указывает на преобразование чего-то одного в другое. Трансформатор устроен таким образом, что позволяет производить такую рекомбинацию. Это электромагнитный прибор, он состоит из двух основных компонентов:
Обмотка как основа устройства
Обмотка изготавливается из проволоки, как правило, она медная. Для того чтобы не было короткого замыкания, проволока покрывается электроизоляционным лаком. Затем она равномерно наматывается на бумажный (картонный) каркас и надевается на сердечник. В другом исполнении обмотка наматывается непосредственно на сердечник, но предварительно на него накладывается электроизоляционный материал. Витки должны плотно прилегать друг к другу, тогда катушка будет меньше занимать места.
Обмоткой называют отдельно взятый провод, намотанный на каркас. Их должно быть не менее двух. Причем ту, к которой подводится напряжение, называют первичной, а с которой снимают — вторичной. Первичная используется одна, а вот вторичных может быть сколько угодно, в разумных, конечно, пределах. Вторичные катушки могут располагаться как рядом, так и в виде бутерброда, ложась друг на друга. В этом случае обмотки разделяются друг от друга изоляцией. В этой роли могут выступать промасленная бумага, пленка или ткань.
Первичную пытаются максимально отделить от вторичной обмотки, чтобы исключить гальваническую связь, исключением является автотрансформатор. У него первичная и вторичная обмотки электрически связаны, т. е. вывод одной соединен с выводом другой. Гальваническая развязка позволяет защищать людей от поражения электрическим током, а оборудование от серьезного повреждения, если не сработает защита.
Виды сердечников
Это второй основной компонент. По своей конструкции сердечник должен быть изготовлен из ферромагнитного материала и иметь жесткую конструкцию. Он исполняет роль магнитопровода и каркаса. По внешнему виду сердечники бывают трех видов:
Вид сердечника никак не влияет на электрические показатели, и выбор зависит от производителя, как ему удобнее изготавливать. Способ изготовления броневого или стержневого сердечника может быть следующим:
- набором пластин;
- прессованием;
- намоткой ленты;
- сбором «подков».
При использовании броневой системы обмотки «защищены» сердечником и их почти не видно. При использовании стержневого вида, обмотки почти полностью закрывают сердечник, видны только верхние и нижние ярма. В тороидальных трансформаторах сердечник выполняется в виде кольца и проволока полностью его закрывает.
Роль трансформатора в электроприборах
Сегодня применение трансформатора очень разнообразно, он есть и дома, и почти в каждом электронном устройстве. Когда использовались ламповые телевизоры (электронные динозавры, кто их сегодня помнит?), то электротрансформатор или автотрансформатор был его неотъемлемой частью. Сегодня он перекочевал внутрь телевизора и сильно изменился, превратившись в импульсный прибор. В зарядных устройствах используются понижающие трансформаторы. Даже в компьютерных колонках он присутствует, повышай звук. Чтобы понять, для чего служит трансформатор, необходимо понять принцип его работы.
По определению трансформатор — это электромагнитное устройство, значит, в его работе используются магнитные силы, создаваемые электрическим полем. Электрическое поле образуется вокруг проводника, по которому течет ток. Если рядом с ним находится другой проводник, то на него будет влиять это электромагнитное поле, создавая в нем электрический ток. Поскольку поле действует перпендикулярно проводнику, то при намотке провода на сердечник, э. д. с. будет параллельно ему.
Чтобы понять, что делает трансформатор, можно посмотреть его работу. К примеру, возьмем стержневой сердечник. Первичная обмотка находится на одной стороне сердечника, вторичная — на другой. По первичной обмотке проходит ток, создается электромагнитное поле, передается по сердечнику на вторичную обмотку и в ней появляется ток.
Однако то, что преобразует трансформатор, должно видоизмениться. На самом деле количество витков в первичной и вторичной обмотках разное. Логично, что чем меньше витков подвергается воздействию электромагнитного поля, тем меньше напряжение. Получается, что с помощью трансформатора можно менять напряжение.
>
Но не только. От первичной катушки передается определенная мощность на вторичную. По закону Ома ничто не пропадает. Тогда, если уменьшается напряжение, значит, должен увеличиваться ток, что и происходит. Получается, что происходит трансформация и тока. Теперь понятно, зачем нужны трансформаторы — с их помощью можно получить нужный ток или напряжение.
Источник: pochini.guru
Трансформаторы тока и напряжения
Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.
Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.
Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.
Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а ТН — измеряемое высшее напряжение в низшее. Измерительные трансформаторы включаются в цепи между высоковольтным оборудованием и контрольно-измерительными приборами: амперметрами, вольтметрами, ваттметрами, приборами релейной защиты, телемеханики и автоматики, счетчиками энергии.
Зачем нужны измерительные трансформаторы напряжения
Измерительные ТН относятся к преобразователям электрической энергии, которые:
- трансформируют напряжение участка сети или установки в напряжение приемлемой величины для осуществления измерений с помощью стандартных измерительных устройств, питания релейной защиты, устройств сигнализации, автоматики, телемеханики;
- изолируя вторичные приборы и цепи, защищают оборудование от высокого напряжения и персонал, имеющего доступ к обслуживанию электроустановок, от поражения током.
Подключение ТН к высоковольтной части электроустановки осуществляется соединением его первичной обмотки «в параллель» к цепи высокого напряжения. Номинал вторичных обмоток трансформатора напряжения составляет обычно 100 В. Так как сопротивление измерительных приборов, подключаемых к вторичной обмотке, велико, током можно пренебречь. Поэтому основной режим работы ТН подобен режиму холостого хода типового силового трансформатора.
Трансформаторы напряжения и их конструкция
Трансформаторы напряжения подразделяются:
- по числу фаз: на одно- и трехфазные;
- по числу вторичных обмоток: двухобмоточный ТН имеет одну вторичную обмотку, трехобмоточный — две: основную и дополнительную;
- по назначению вторичных обмоток: с основной вторичной обмоткой, с дополнительной, со специальной компенсационной — для контроля изоляции цепи;
- по особенностям исполнений — на трансформаторы защищенного типа, водозащищенного типа (защита от капель и влаги), герметичные, со встроенным предохранителем и с антирезонансной конструкцией;
- по принципу действия и особенностям конструкций: на каскадные, ёмкостные, заземляемые и не заземляемые.
У каскадного ТН первичная обмотка разделена на несколько поочередно соединенных секций, передача энергии от которых к вторичным обмоткам происходит посредством связующих и выравнивающих обмоток. У ёмкостного ТН в конструкции имеется ёмкостный делитель. Заземляемый однофазный ТН — устройство, у которого один конец первичной обмотки должен быть заземлен. У заземляемого трехфазного ТН должна быть заземлена нейтраль первичной обмотки. Все части первичной обмотки не заземляемого ТН изолированы от земли.
Зачем нужны трансформаторы тока
Трансформатор тока — базовый измерительный аппарат в электроэнергетике, применяемый для преобразования тока первичной сети во вторичный стандартный ток величиной 5 А или 1 А. Первичная обмотка соединяется непосредственно с цепью высокого напряжения последовательным способом подключения. Вторичная обмотка включается во вторичные цепи измерений, защиты и учета. 5А — часто встречающийся номинал вторичной обмотки.
Принцип действия и конструкция трансформаторов тока
Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.
Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.
По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:
- • Опорные монтируются на опорной плоскости.
- • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
- • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
- • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
- • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
- • Накладные надеваются сверху на проходной изолятор.
- • Переносные предназначаются для лабораторных и контрольных измерений.
По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.
К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.
Видео про трансформаторы тока
Кратко о назначении трансформатора тока, составе и особенностях конструкции, о схеме и принципе работы. Почему нельзя допускать размыкание вторичных цепей трансформатора тока без предварительного их замыкания накоротко? Почему на напряжение выше 330 кВ изготавливаются ТТ каскадного типа? Об этом и об измерительном трансформаторе тока для подстанции 750 кВ вы узнаете из видео.
>
Источник: electricity-help.ru
Трансформатор понижающий: значение, принципы работы, сфера применения
В расширенной электрической цепи обязательно используют трансформатор понижающий, чтобы на выходе потребители получали нужный импульс и могли безопасно эксплуатировать бытовую технику, запускать агрегаты, заводское оборудование на длительный срок. С правильно подобранными параметрами трансформатор понижающий просто необходим, чтобы обеспечить нормальную работоспособность магистрали без сбоев и энергетических потерь.
Что такое понижающий трансформатор: точное и развернутое определение агрегата
Современное оборудование, нацеленное на понижение напряжения в сети до заданных параметров, называется понижающим трансформатором. При этом устройство данного агрегата очень простое, достаточно для его бесперебойного функционирования специальный сердечник с двумя катушками или обмотками. При этом одна из обмоток по схеме подключается к сети переменного тока. И данное «гнездо» считается нормальным источником питания энергетического оборудования, а используемая обмотка за свой функционал получает точное название – «первичная обмотка». В устройстве, как вы помните, имеется и вторая обмотка, которая подключается непосредственно к электроприбору, получая при этом название – вторичная.
Важно знать! В устройстве понижающего трансформатора предусматривается две катушки, имеющие разность в напряжении. Обеспечивается разность показателей напряжения числом витков внутри системы.
Два основным принципа работы понижающего энергооборудования
Принципы работы пониженного трансформатора очень просты, спокойно объясняются стандартными законами физики, трактующими особенности появления магнитного поля, и звучат они следующим образом:
- Наличие в системе магнитного поля переменного типа. Напомним, что магнитное поле переменного типа формируется вокруг стержня, как следствие функционирования первичной обмотки, на которую по схеме подается ток. Движение импульса направленное, а не хаотичное.
- Поле магнитное создает ток во вторичной обмотке. При этом получаемая величина тока на выходе будет целиком и полностью зависеть от количества витков и в первой, и второй обмотке.
Таким образом, работа электрических агрегатов, работающих на повышение или понижение импульса, зависит от магнитного поля, возникающего внутри и приводящего в действие трансформатор.
Где и для чего используют понижающие трансформаторы
- трансформатор пониженного напряжения используют для питания рабочих инструментов;
- понижающие агрегаты используют обязательно в основной магистрали, если необходимо оборудовать цеха или предприятия с различной автоматикой;
- электрооборудование с понижающим потенциалом обязательно используют, если заново оборудуется низковольтная сеть освещения;
- понижающий трансформатор 12 вольт задействуют для питания электроники.
Ассортимент трансформаторов огромен, и выбор агрегата в пользование всецело зависит от вольтажа вторичной обмотки. И не обойтись без понижающей подстанции ни в строительной сфере, ни в бытовой, то есть там, где идет применение инструментов от простых электрических шуруповертов до массивных крановых двигателей.
Какие выгоды имеют электронные трансформаторы понижающего типа и почему они вытесняют старые модели трансформаторов?
Уже несколько лет как в продажу поступили электронные трансформаторы понижающего типа. Внутри современных агрегатов нет тех привычных катушек и сердечников, потому что уже используются точные микросхемы, специальные конденсаторы, все необходимые резисторы, а также всевозможные и положенные по регламенту электронные элементы. И сразу возникает вопрос: чем он лучше предыдущим и привычных образцов.
В чем же его преимущество перед классическим вариантом? – Постараемся разобраться.
Во-первых, ящик с понижающим трансформатором ятп уже не такой громоздкий, не занимает много места. Его в большей степени характеризуют, как мобильное оборудование, не громоздкое, которое своей небольшой массой не доставляет проблем при монтаже и дальнейшей эксплуатации. Согласитесь, что многие пожелают приобрести прибор небольшой массы и приемлемых для транспортировки и установки на место использования габаритов.
Во-вторых, размеры трансформатора понижающего 110 не преуменьшают КПД оборудования. Наладчики такого электрического агрегата вообще хвалят его за высокий коэффициент полезного действия.
В виду массы преимуществ электронных трансформаторов понижающего типа их задействуют на многих предприятиях, офисных комплексах, торговых площадках, да еще и потому что они не продуцируют надоедливый шум, раздражающий и угнетающий рабочих и посетителей. Работают трансформаторы практически бесшумно, не издавая ранее привычный гул.
Не стоит забывать еще об одном положительном качестве электронных трансформаторов понижающего типа. И оно проявляется в чрезмерной работоспособности агрегата без сбоев и проблем в процессе наладок, профилактических осмотров и непосредственной эксплуатации. И самое главное, в момент такой интенсивной работы, понижающее импульс оборудование не нагревается, его поверхности остаются безопасными и комфортными для окружающих.
Для пассивных пользователей еще одно положительное качество покажется малоэффективным, так как обыватели в основном привыкли только пользоваться энергосистемой, даже не задумываясь, а как же она функционирует, за счет чего вырабатывает свой потенциал. Но вот специалисты и электрики-наладчики хвалят понижающие трансформаторы 36в за возможность проводить регулировку выходного напряжения, таким образом, расширяя границы сферы применения данного эффективного современного образца техники.
Во главу угла можно поставить также очень важное преимущество электронных трансформаторов понижающего типа. Это – безопасность. А как же без нее! Ведь вводится в эксплуатацию сложная электрическая магистраль, рассчитанная на большое количество пользователей, на подачу сигнала к отдаленным от основной подстанции участкам. И чтобы обезопасить от сбоев сеть, в схеме понижающего прибора обязательно предусматривается встраиваемая защитная система от короткого замыкания.
Таким образом, можно найти массу преимуществ электронных трансформаторов понижающего типа. Они, конечно же, конкурентно способны, но все равно не считаются единственно вариантом, избираемым для создания современных энергетических сетей.
Любопытный вариант – понижающий трансформатор серии ЯТП
Представим ситуацию, что выполняются ремонтные работы на отдаленных участках от цивилизации или же просто нет возможности подключится к общей магистрали, тогда стоит рассмотреть любопытный вариант оборудования – понижающий трансформатор серии ЯТП. Его рекомендуют использовать на территории маломощных цехов, на небольших и временных строительных площадках, когда, например, надо провести временное освещение для выполнения ремонтных работ или же создать дополнительное освещение, подключая переносные светильники. ЯТП в корпусном исполнении выглядит как обычный переносной малогабаритный ящик с удобной ручкой. Внутри короба находится однофазный трансформатор, дополнительно имеющий автоматический выключатель и штепсельную розетку.
Перед самым моментом эксплуатации понижающий трансформатор 380 размещают на кронштейнах или подготовленных полках, опорах около стен.
Как правильно выбрать трансформатор понижающий: на что обратить внимание
- Данные о входном напряжении. Для быта лучше избирать агрегаты с показателем – 220 В, а для более мощных цехов допустимо и 380 В.
- Данные о выходном напряжении. Все зависит от электроприборов, которые будут применяться на участке. Обычно спекут расширен от 220 до 12 В.
- Мощность. Цифровой показатель мощности у трансформатора хотя бы должен быть на 20 процентов больше, чем импульс уже подаваемый потребителям. Только при таком условии работа системы будет нормально налажена.
Таким образом, трансформатор понижающий используется для создания мощной магистрали, когда от к основной подстанции подключается и трансформатор повышающий, импульсы которого надо снижать к допустимым нормам. Эту роль и выполняет трансформатор понижающий. Выбирать агрегат надо тщательно, чтобы запросы потребителей совпадали с возможностями электрического оборудования.
Источник: provotok.ru