Что такое и зачем нужен трансформатор тока
Для измерения токов в силовых цепях переменного напряжения применяют трансформаторы тока. Они применяются как в цепях до 1000 В так и выше 1000 В. Они имеют стандартные токи вторичной цепи – 1 А или 5 А и измерительные приборы и реле выполняют на этот ток. Вторичная обмотка трансформатора обязательно заземляется, чтоб в случае пробоя изоляции измерительные устройства не оказались под напряжением первичной цепи.
Схема такого трансформатора показана ниже:
Главной особенностью таких устройств является то, что ток, протекающий в первичной цепи абсолютно независим от режимов работы вторичной цепи. Во вторичной цепи трансформатора предохранитель не ставят, так как обрыв вторичной цепи трансформатора тока – это аварийный режим работы. Почему так мы рассмотрим в следующих статьях.
Основные параметры трансформаторов тока
Номинальное напряжение
Это напряжение линейное сети, в которой должен работать трансформатор. Именно это напряжение будет определять изоляцию между обмотками, одна из которых будет находится под высоким потенциалом, а вторая заземлена.
Номинальные токи
Токи, при которых устройство может работать в длительном режиме не перегреваясь. Как правило, такие трансформаторы имеют большой запас по нагреву и могут работать нормально с перегрузкой в 20%.
Коэффициент трансформации
Отношение первичного и вторичного тока определяемый формулой:
Коэффициент трансформации действительный будет иметь отличия от номинального ввиду потерь в трансформаторе.
Токовая погрешность
В процентах имеет вид:
Где I2 – вторичный, I1 ‘ — первичный приведенный токи.
Угловая погрешность
В реальном трансформаторе первичная составляющая по фазе сдвинута от вторичной на угол отличный от 180 0 . Для отсчета угловой погрешности вектор вторичной составляющей поворачивают на 180 0 . Угол между вектором первичной составляющей и этим вектором носит название угловой погрешности. Если перевернутый вектор вторичной составляющей опережает первичную – то погрешность будет положительной, если отстает – отрицательной. Измеряется такой вид погрешности в минутах.
Соответственно трансформаторы тока имеют свой класс точности согласно ГОСТ – 0,2;0,5;1;3;10. Класс точности говорит о допустимой погрешности в процентах Z2 = Z2н.
Полная погрешность
Определяется в процентах %, и имеет формулу:
Где: I1 – действующее первичное значение, i1, i2 – мгновенные значения первичных и вторичных токов, Т – период частоты напряжения переменного.
Номинальная нагрузка
Нагрузка, определяемая в Омах, при которой трансформатор будет работать в пределах своего класса точности и с cosφ2н=0,8. Иногда могут применять понятие номинальной мощности Р:
Поскольку значение I2н строго нормировано, то мощность трансформатора будет зависеть только от нагрузки Z2н.
Номинальная предельная кратность
Кратность первичного тока к значению его номинальному, при котором погрешность его может достигать примерно 10%. При этом нагрузка и ее коэффициенты мощности должны быть номинальными.
Максимальная кратность вторичного тока
Отношение максимального вторичного тока, к номинальному его значению при действующей вторичной нагрузке равной номинальной. Максимальная кратность определяется насыщением магнитопровода, это когда при дальнейшем увеличении первичного тока, вторичный остается неизменным.
Источник: elenergi.ru
Измерительный трансформатор тока. Что это и зачем он нужен?
Введение
Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать, используя аппараты только в силовых цепях.
Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.
В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.
Технические характеристики и режим работы
Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).
С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.
Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом.
Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.
Применение
Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например, до стандартных 5 Ампер.
Современный рынок предлагает решения совместимые как с проводами, так и с шинами.
Важное замечание
Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.
>
Трансформаторы тока выполняют не только важные задачи отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.
Источник: keaz.ru
Для чего нужен трансформатор тока?
Определение
В первую очередь необходимо понять, трансформатор тока – что это такое. На самом деле сделать это достаточно просто, ведь каждый хотя бы раз встречался с подобным устройством и примерно представляет, как именно оно работает.
В трансформаторе первичный ток пропорционален вторичному, а когда устройство включается и начинает работать, первичный ток сдвигается на угол (хотя в градусах величина угла равна практически нулю и даже не доходит до одной целой единицы).
Первичная обмотка включена последовательно, вторичная замыкается на нагрузку, именно поэтому получаются пропорциональные величины. Также стоит учитывать то, что вторичная заземляется, а обе они полностью изолированы друг от друга, значит, не могут передавать напряжение или какие-либо заряды.
Назначение ↑
С учетом представленной выше конструкции можно выделить ряд функций. Вот несколько основных сфер, где трансформатор тока незаменим:
- он помогает измерить любым прибором подобные заряды. В первую очередь это касается силы тока, но – кроме амперметра – можно подключить и вольтметр, и другие приборы для измерения. Здесь переменный ток остается переменным, он просто становится более приемлемым для измерения, и с помощью данных приборов легко можно получить конкретное число единиц в определенной системе;
- изолирование необходимо в том случае, когда электрическая система достаточно мощная. Трансформаторы здесь нужны для стабильной работы. Поэтому возможно производить ремонтные и профилактические работы, не опасаясь за жизнь и здоровье персонала;
- преобразование переменного тока в такой же переменный ток подходящего значения Конкретные единицы подбираются таким образом, чтобы реле и защита устройства, которое будет подключено к конкретной электрической цепи, не перегорели и работали достаточно стабильно;
- изолирование реле необходимо для того, чтобы защитить сотрудников, которые регулярно проверяют и ремонтируют технику. Напряжение способно нанести вред, даже если не нарушена изоляция или же не было серьезных ошибок в технологии установки, а также при эксплуатации.
Каждый понимает, что ответ на вопрос, для чего нужен трансформатор тока, неоднозначный. В зависимости от конкретной ситуации, а также от вида самого трансформатора, они могут выполнять разные функции, однако самое главное заключается в том, что необходимость этого устройства не требует доказательств.
Особенности ↑
Основная особенность данного прибора в его применении. Это всего лишь две функции. Первая ориентирована на защиту, а вторая – на измерение. Отличительная особенность таких аппаратов заключается в точности. Она обязательна в любой ситуации, чтобы измерения или же защита давала конкретные единицы.
Обеспечивается стабильная работа только максимально четким контролем. Любая, даже самая небольшая ошибка может быть очень трагичной.
Нужно регулярно проверять эти устройства, а также понимать, для чего нужны трансформаторы тока.
Есть несколько основных групп трансформаторов тока. Каждая из них имеет свои подгруппы.
По установке
Некоторые модели созданы специально для закрытых помещений, другие же применяются на открытом пространстве. Изначально конструкция подразумевает данные различия, которые необходимо учитывать. Есть модели для установки в проемах (это либо специальная полость в стене, либо любая, уже имеющаяся арка). Также есть и вторая группа приборов, которые устанавливаются только на опорную стену, иными словами, нужно найти достаточно прочную вертикальную поверхность.
По числу
В первую очередь это касается коэффициента. В зависимости от числа обмоток и некоторых других особенностей эта цифра может быть небольшой или же наоборот значительной. Также есть и ступени трансформатора тока.
По обмотке
Существуют одновитковые и многовитковые трансформаторы.
Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения испытания изоляции силовых трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать испытание изоляции силовых трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .
Источник: energiatrend.ru
Все о трансформаторах тока. Классификация, конструкция, принцип действия
Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов до величин требуемых для подключения приборов измерения, устройств РЗиА.
Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.
Конструкция и принцип действия трансформатора тока
Трансформаторы тока конструктивно состоят из:
- замкнутого магнитопровода;
- 2-х обмоток (первичной, вторичной).
Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.
Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.
Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.
Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.
К этим обмоткам в обязательном порядке должна быть подключена нагрузка.
Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.
>
Интересное видео о трансформаторах тока смотрите ниже:
Погрешность ТТ определяется в зависимости от:
- сечения магнитопровода;
- проницаемости используемого для производства магнитопровода материала;
- величины магнитного пути.
Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.
Предельное значение сопротивление нагрузки указывается в справочных материалах.
Классификация трансформаторов тока
Трансформаторы тока принято классифицировать по следующим признакам:
- В зависимости от назначения их разделяют на:
- защитные;
- измерительные;
- промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
- лабораторные.
- По типу установки разделяют устройства:
- наружной установки (размещаемые в ОРУ);
- внутренней установки (размещаемые в ЗРУ);
- встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
- накладные — устанавливаемые сверху на проходные изоляторы;
- переносные (для лабораторных испытаний и диагностических измерений).
- Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
- многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
- одновитковые;
- шинные.
- По способу исполнения изоляции ТТ разбивают на устройства:
- с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
- с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
- имеющие заливку из компаунда.
- По количеству ступеней трансформации ТТ бывают:
- одноступенчатые;
- двухступенчатые (каскадные).
- Исходя из номинального напряжения различают:
- ТТ с номинальным напряжением — выше 1 кВ;
- ТТ с напряжением – до 1 кВ.
Ещё одно интересное видео о схемах включения трансформаторов тока:
Трансформаторы тока разных производителей
Рассмотрим несколько трансформаторов тока разных производителей:
Трансформаторы тока ТОЛ-НТЗ-10-01
Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.
Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.
Рабочее положение трансформатора в пространстве – любое.
Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:
- класс нагревостойкости «В» по ГОСТ 8865-93;
- уровень изоляции «а» и «б» по ГОСТ 1516.3-96.
Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.
Расположение вторичных выводов:
- «А» — параллельно установочной поверхности;
- «В» — перпендикулярно установочной поверхности;
- «С» — из гибкого провода, параллельно установочной поверхности;
- «D» — из гибкого провода, перпендикулярно установочной поверхности.
Требования к надежности
Для трансформаторов установлены следующие показатели надежности:
- средняя наработка до отказа – 2´105 ч.;
- полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией
ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2
- 10 — номинальное напряжение;
- «0» — конструктивный вариант исполнения;
- «1» — исполнение по длине корпуса;
- «А» — вторичные выводы расположенные параллельно установочной поверхности;
- «Б» — изолирующие барьеры;
- 0,5S — класс точности измерительной вторичной обмотки;
- (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
- 10Р — класс точности защитной вторичной обмотки;
- 10 — номинальная предельная кратность вторичной обмотки для защиты;
- 5 — номинальная вторичная нагрузка обмотки для измерения;
- 15 — номинальная вторичная нагрузка обмотки для защиты;
- 300 — номинальный первичный ток;
- 5 — номинальный вторичный ток;
- 31,5 — односекундный ток термической стойкости;
- «УХЛ» — климатическое исполнение;
- 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.
Опорные трансформаторы тока TОП-0,66
Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.
Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.
Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:
- высота над уровнем моря не более 1000 м;
- температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
- окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
- рабочее положение — любое.
Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.
Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Изготовитель — Фирма ООО «ABB»
Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).
Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.
Трансформаторы спроектированы и изготовлены согласно следующим стандартам:
- МЭК, VDE, ANSI, BS, ГОСТ и CSN.
- Максимальное напряжение — 3.6 кВ — 25 кВ
- Первичный ток — 600 A – 5000 A
- Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
- Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
- Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.
Источник: pue8.ru
Трансформатор тока.
В процессе использования энергетических систем нередко бывают случаи, когда нужно превратить какие-то электрические величины в их аналоги, при этом показатели нужно соответственно изменить в нужном соотношении, для чего обычно применяется трансформатор тока. С помощью трансформатора тока можно смоделировать некоторые процессы в электрических установках, а также сделать измерительный процесс более безопасным.
Функционирование трансформатора тока базируется на законе электромагнитной индукции. Данный закон работает в электрических и магнитных полях, которые изменяются по форме гармоник переменных синусоидальных величин.
>
Трансформатор тока превращает начальное значение вектора тока, который течет в силовой цепи, в конечное, меньшее по величине, при этом выдерживается нужное соотношение значения по модулю и сохраняется точная величина угла.
Как устроен трансформатор тока?
На следующем рисунке схематично обозначены процессы, протекающие в трансформаторе тока при превращении электроэнергии.
По первичной силовой обмотке с количеством витков ω1 течет ток I1, при этом он преодолевает ее полное сопротивление Z1. Вокруг катушки возникает магнитный поток Ф1, он фиксируется с помощью магнитопровода, находящегося перпендикулярно по отношению к вектору I1. Подобный способ расположения позволяет превращать электрическую энергию в магнитную с наименьшими потерями.
При пересечении перпендикулярных витков обмотки ω2 поток Ф1 создает в них электродвижущую силу Е2, под ее действием во вторичной обмотке появляется ток I2, который преодолевает полное сопротивление катушки Z2 и подсоединенной на выходе нагрузки Zн. В процессе напряжение U2 на зажимах вторичной цепи падает.
Коэффициент трансформации К1, можно посчитать, разделив вектор I1 на вектор I2. Это один из основных параметров трансформаторов тока, он определяется прежде, чем начинают проектировать устройство, а в действующих трансформаторах его измеряют. Однако, как и при работе любых приборов, реальные показания отличаются от теоретических. Для учета таких погрешностей существует специальная метрологическая характеристика, или класс точности трансформатора тока.
В отличие от расчетов, при работе трансформатора тока в жизни величины токов в обмотках не являются константами, так что коэффициент трансформации рассчитывают по номиналам. К примеру, если коэффициент трансформации равен 1000/5, то это значит, что в первичном витке течет ток величиной 1 кА, а во вторичных действует нагрузка 5 А. Исходя из данных величин, можно понять, как долго трансформатор тока прослужит.
Магнитный поток Ф2, возникающий благодаря вторичному току I2, понижает величину потока Ф1 в магнитопроводе. В процессе возникающий поток трансформатора Фт рассчитывается как геометрическая сумма векторов Ф1 и Ф2.
Где и как используют трансформаторы тока?
Самые разные виды трансформаторов тока применяются в электронных устройствах, начиная от небольших и заканчивая приборами размером в несколько метров. Обычно их классифицируют по признакам эксплуатации.
Классификация трансформаторов тока:
- для измерений (с их помощью на измерительные устройства подается электрический ток);
- для защиты (их подключают к цепям защит);
- для лабораторных применений (такие трансформаторы тока имеют большой класс точности);
- для повторных преобразований (промежуточные).
В работе объектов используют следующие трансформаторы тока:
- для внешнего монтажа (на улице);
- для внутреннего монтажа (для закрытых установок);
- вмонтированные внутрь корпуса прибора;
- накладные ( их надевают на проходной изолятор);
- переносные (для проведения измерений в различных местах).
По значению рабочего напряжения оборудования трансформаторы тока делятся на:
- высоковольтные (обладающие напряжением свыше 1000 В);
- с номинальным напряжением не более 1 кВ.
Существуют и другие деления трансформаторов тока на виды, в том числе по способу материалов для изоляции, по числу ступеней трансформации и другим характеристикам.
Для чего нужны трансформаторы тока?
Чаще всего трансформаторы тока используют в цепях учета измерения электроэнергии, для замеров и защит линий или силовых автотрансформаторов обычно применяют переносные трансформаторы тока.
На следующем изображении приведено расположение трансформаторов тока для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.
Таким же целям служат трансформаторы тока на ОРУ-330 кВ, однако они гораздо больших размеров из-за сложностей конструкции, так как они предназначены для более высоковольтного оборудования.
На энергетическом оборудовании нередко используют встроенные конструкции трансформаторов тока, их помещают непосредственно на корпусе силового объекта.
Их конструкция предполагает вторичные обмотки с выводами, которые находятся вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов трансформатора тока подведены к закрепленным тут же клеммным ящикам.
В трансформаторах тока, характеризующихся высоким напряжением, обычно как изолятор применяют трансформаторное масло. На следующем изображении показан вариант такой конструкции для трансформаторов тока серии ТФЗМ для работы при напряжении, равном 35 кВ.
При напряжениях, не превышающих 10 кВ, в целях изоляции между обмотками при производстве корпуса прибора, применяют твердые диэлектрические материалы.
Например, трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.
На следующей упрощенной схеме показан пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ.
Как понять, что трансформатор тока испорчен, и найти неисправности?
Когда трансформатор тока находится под нагрузкой, у него может быть нарушено электрическое сопротивление изоляции обмоток или их проводимость. Это происходит из-за воздействия теплового перегрева, нанесенных случайным образом механических повреждений или неправильной сборки.
В процессе работы трансформатора тока вероятнее всего возникновение проблем с изоляцией, в результате чего случаются замыкания обмоток между витками и понижение передаваемой мощности. Также из-за этого может произойти утечка через случайно созданные цепи, что, в свою очередь, может закончиться коротким замыканием.
Для того, чтобы обнаружить точки, в которых конструкция была собрана неправильно, трансформатор тока необходимо регулярно проверять с помощью тепловизора. Тогда будет возможно вовремя обнаружить и исправить дефекты в виде, например, нарушенных контактов, и снизить перегрев устройства.
На предмет отсутствия межвитковых замыканий приборы проверяют специалисты лабораторий РЗА с помощью:
- снятия вольтамперной характеристики;
- прогрузки трансформатора тока от постороннего источника;
- замеров основных характеристик прибора в рабочей схеме.
Они же проводят анализ величину коэффициента трансформации.
При всех работах замеряется отношение между векторами первичных и вторичных токов по величине. Их угловые отклонения в данном случае не замеряют, так как высокоточных фазоизмерительных устройств для проверки трансформаторов тока в метрологических лабораториях не существует.
Высоковольтные испытания диэлектрических свойств проводятся специалистами лаборатории службы изоляции.
Источник: www.calc.ru