Блок контактор что это такое

Электромагнитные контакторы

Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.

Электромагнитный контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего с помощью электромагнитного привода.

Классификация электромагнитных контакторов

Общепромышленные контакторы классифицируются:

  • по роду тока главной цепи и цепи управления (включающей катушки) -постоянного, переменного, постоянного и переменного тока;
  • по числу главных полюсов – от 1 до 5;
  • по номинальному току главной цепи – от 1,5 до 4800 А;
  • по номинальному напряжению главной цепи: от 27 до 2000 В постоянного тока; от 110 до 1600 В переменного тока частотой 50, 60, 500, 1000, 2400, 8000, 10 000 Гц;
  • по номинальному напряжению включающей катушки: от 12 до 440 В постоянного тока, от 12 до 660 В переменного тока частотой 50 Гц, от 24 до 660 В переменного тока частотой 60 Гц;
  • по наличию вспомогательных контактов – с контактами, без контактов.

Контакторы также различаются по роду присоединения проводников главной цепи и цепи управления, способу монтажа, виду присоединения внешних проводников и т.п.

Указанные признаки находят отражение в типе контактора, который присвоен предприятием-изготовителем.

Нормальная работа контакторов допускается

  • при напряжении на зажимах главной цепи до 1,1 и цепи управления от 0,85 до 1,1 номинального напряжения соответствующих цепей;
  • при снижении напряжения переменного тока до 0,7 от номинального включающая катушка должна удерживать якорь электромагнита контак­тора в полностью притянутом положении и при снятии напряжения не удерживать его.

Выпускаемые промышленностью серии электромагнитных контакторов рассчитаны на применение в разных климатических поясах, работу в различных условиях, определяемых местом размещения при эксплуатации, механическими воздействиями и взрывоопасностью окружающей среды и, как правило, не имеют специальной защиты от прикосновений и внешних воздействий.

Конструкция электромагнитных контакторов

Контактор состоит из следующих основных узлов: главных контактов, дугогасительной системы, электромагнитной системы, вспомогательных контактов.

Главные контакты осуществляю замыкание и размыкание силовой цепи. Они должны быть рассчитаны на длительное проведение номинального тока и на производство большого числа включений и отключений при большой их частоте. Нормальным считают положение контактов, когда втягивающая катушка контактора не обтекается током и освобождены все имеющиеся механические защелки. Главные контакты могут выполняться рычажного и мостикового типа. Рычажные контакты предполагают поворотную подвижную систему, мостиковые – прямоходовую.

Дугогасительные камеры контакторов постоянного тока построены на принципе гашения электрической дуги поперечным магнитным полем в камерах с продольными щелями. Магнитное поле в подавляюще большинстве конструкций возбуждается последовательно включенной с контактами дугогасительной катушкой.

Дугогасительная система обеспечивает гашение электрической дуги, которая возникает при размыкании главных контактов. Способы гашения дуги и конструкции дугогасительных систем определяются родом тока главной цепи и режимом работы контактора.

Электромагнитная система контактора обеспечивает дистанционное управление контактором, т. е. включение и отключение. Конструкция системы определяется родом тока и цепи управления контактора и его кинематической схемой. Электромагнитная система состоит из сердечника, якоря, катушки и крепежных деталей.

Электромагнитная система контактора может рассчитываться на включение якоря и удержание его в замкнутом положении или только на включение якоря. Удержание же его в замкнутом положении в этом случае осуществляется защелкой.

Отключение контактора происходит после обесточивания катушки под действием отключающей пружины, или собственного веса подвижной системы, но чаще пружины.

Вспомогательные контакты. Производят переключения в цепях управления контактора, а также в цепях блокировки и сигнализации. Они рассчитаны на длительное проведение тока не более 20 А, и отключение тока не более 5 А. Контакты выполняются как замыкающие, так и размыкающие, в подавляющем большинстве случаев мостикового типа.

Контакторы переменного тока выполняются с дугогасительными камерами с деионной решеткой. При возникновении дуга движется на решетку, разбивается на ряд мелких дуг и в момент перехода тока через ноль гаснет.

Электрические схемы контакторов , состоящие из функциональных токопроводящих элементов (катушки управления, главных и вспомогательных контактов), в большинстве случаев имеют стандартный вид и отличаются лишь количеством и видом контактов и катушек.

Важными параметрами контактора являются номинальные рабочие ток и напряжения .

Номинальный ток контактора – это ток, который определяется условиями нагрева главной цепи при отсутствии включения или отключения контактора. Причем, контактор способен выдержать этот ток три замкнутых главных контактах в течение 8 часов, а превышение температуры различных его частей не должно быть больше допустимой величины. При повторно-кратковременном режиме работы аппарата часто пользуются понятием допустимого эквивалентного тока длительного режима.

Напряжение главной цепи контактора – наибольшее номинальное напряжение, для работы при котором предназначен контактор. Если номинальные ток и напряжения контактора определяют для него максимально-допустимые условия применения в длительном режиме работы, то номинальные рабочий ток и рабочее напряжение определяются данными условиями эксплуатации. Так, номинальный рабочий ток – ток, который определяет применение контактора в данных условиях, установленных предприятием-изготовителем в зависимости от номинального рабочего напряжения, номинального режима работы, категории применения, типоисполнения и условий эксплуатации. А номинальное рабочее напряжение равно напряжению сети, в которой в данных условиях может работать контактор.

Контакторы должны выбираться по следующим основным техническим параметрам:

1) по назначению и области применения;

2) по категории применения;

3) по величине механической и коммутационной износостойкости;

4) по числу и исполнению главных и вспомогательных контактов;

5) по роду тока и величинам номинального напряжения и тока главной цепи;

6) по номинальному напряжению и потребляемой мощности включающих катушек;

7) по режиму работы;

8) по климатическому исполнению и категории размещения.

Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока. Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих цепей могут быть как переменного, так и постоянного тока.

Контакторы постоянного тока.

В настоящее время применение контакторов постоянного тока и соответственно новые их разработки их поэтому сокращаются. Контакторы постоянного тока выпускаются в основном на напряжение 22 и 440 В., токи до 630 А., однополюсные и двухполюсные.

Контакторы серии КПД 100Е предназначены для коммутирования главных цепей и цепей управления электроприводом постоянного тока напряжением до 220В.

Контакторы выпускаются на номинальные токи от 25 до 250 А.

Контакторы серии КПВ 600 предназначены для коммутации главных цепей электроприводов постоянного тока. Контакторы этой серии имеют два исполнения: с одним замыкающим главным контактом (КПВ 600) и с одним размыкающим главным контактом (КПВ 620).

Управление контакторами осуществляется от сети постоянного тока.

Контакторы выпускаются на номинальные токи от 100 до 630 А. Контактор на ток 100 А имеет массу 5,5 кг, на 630 А – 30 кг.

Контакторы переменного тока : КТ6000, КТ7000

КТ (КТП) – Х1 Х2 Х3 Х4 С Х5

Х1 – номер серии, 60, 70.

Х2 – величина контактора: 0, 1, 2, 3, 4, 5, 6.

Х3 – число полюсов: 2, 3, 4, 5.

Х4 – дополнительное значение специфических особенностей сери: Б – модернизированные контакты; А – повышенная коммутационная способность при напряжении 660В.

С – контакты с металлокерамическими накладками на основе серебра. Отсутствие буквы означает, что контакты медные.

Х5 – климатическое исполнение: У3, УХЛ, Т3.

Контаткторы переменного тока строятся, как правило, трехполюсными с замыкающими главными контактами. Электромагнитные системы выполняются шихтованными, т. е. набранными из отдельных изолированных друг от друга пластин толщиной до 1 мм. Катушки низкоомные с малым числом витков. Основную часть сопротивления катушки составляет ее индуктивное сопротивлние, которое зависит от величины зазора. Поэтому ток в катушке контактора переменного тока при разомкнутой системе в 5-10 раз превышает ток при замкнутой магнитной системе. Электромагнитная система контакторов переменного тока имеет короткозамкнутый виток на сердечнике для устранения гудения и вибрации.

В отличии от контакторов постоянного тока режим включения контакторов переменного тока более тяжел, чем режим отключения из за пускового тока асинхронных электродвигателей с короткозамкнутым ротором. Кроме этого наличие дребезга контактов при включении приводит в этих условиях к большому износу контактов. Поэтому борьба с дребезгом при включении здесь приобретает первостепенное значение.

Источник: electricalschool.info

Чем отличается контактор от пускателя

Контакторы и пускатели представляют собой специальные электромагнитные устройства, которые широко используются в системах управления и защиты электрифицированных объектов. При помощи предложенных механизмов можно осуществлять дистанционное подключение, остановку и отключение электрических приводов различного оборудования как промышленного типа, так и некоторого бытового. Эти электромеханические узлы станут незаменимыми в тех случаях, когда требуется выполнять частые пуски электрических моторов или осуществлять подключение электрооборудования, питающегося токами высокого ампеража. Рассмотрим, что же собой представляют эти устройства, и какое между ними сходство и основные отличия.

Читайте также:  Цвет фазного и нулевого провода

Что такое контактор?

Контактор представляет собой исполнительный электромеханический механизм, выполненный в виде блока, в котором расположены быстродействующие контактные группы. Контактор может функционировать как самостоятельное устройство или использоваться в конструкции другого оборудования или системе управления и защиты электрифицированного объекта. Контакторная система является коммутационным узлом, который поддерживает дистанционное управление и может использоваться для частых коммутаций электрических цепей, работающих в нормальных режимах эксплуатации. Для замыкания / размыкания контактов в основном применяются электромагнитные приводы, которые приводят в действие исполнительный механизм. В отличие от релейной системы, которая также может замыкать или размыкать контакты контактор производит одновременный разрыв электрической цепи сразу в нескольких местах, в то время, как реле это делает только в одном месте.

Что такое магнитный пускатель?

Магнитные пускатели являются также коммутационными устройствами, которые являются фактически модифицированными контакторами, поддерживающими возможность коммутации мощных нагрузок переменного и постоянного тока. Эти устройства эффективно применяются для включений/отключений силовых электроцепей. Предлагаемые коммутационные системы владеют достаточно широкой областью применения. Основное их предназначение – это пуск, реверсирование током и остановка 3-фазного электрического асинхронного привода. Кроме этого, эти устройства успешно могут применяться в системах дистанционного управления различными электрифицированными объектами. Кроме основных рабочих элементов контакторы могут доукомплектовываться различными дополнительными узлами такими, как тепловые реле, вспомогательные контактные группы, автоматы для пуска электродвигателей и пр.

Что общего между контактором и пускателем?

Чтобы понять, в чем же отличия между этими двумя коммутационными системами сначала разберемся, в чем же они схожи между собой.

Общим между пускателем и контактором является то, что оба этих устройства применяются для коммутации электрических цепей, питающих электрооборудование. И контакторы и пускатели применяются для пуска/остановки электродвигателей переменного тока, а также для ввода или вывода ступеней сопротивления, если пуск/остановка выполняются по реостатному принципу.

И контактор, и пускатель владеет в своей конструкции дополнительными парами контактов, используемыми для цепей управления. Они могут быть нормально замкнутыми или нормально разомкнутыми парами контактов.

Отличия между контакторами и пускателями

Рассмотрим основные отличия между этими двумя коммутационными устройствами.

Габаритные размеры.

Контактор, в отличие от пускателя является довольно таки увесистым и крупногабаритным устройством. Например, 100-амперный контактор в сравнении с таким же пускателем в несколько раз тяжелее и имеет существенно большие размеры.

Конструкционные особенности

Если рассматривать конструкцию контактора, то сразу бросаются в глаза мощные силовые контакторы с дугогасительными камерами. Защитного кожуха, как такового, в контакторах нет, контактор монтируется на специальных щитах, расположенных в закрытых помещениях.

Что касается пускателя, то его силовые контакты всегда находятся под защитой пластикового корпуса. Больших камер дугогашения в пускателях нет, поэтому их не рекомендуют использовать в мощных электроцепях, где требуется частая коммутация.

Защищенность

Благодаря использованию пластикового корпуса в пускателе, а в некоторых случаях и металлического кожуха, эти устройства отличаются высокой степенью защищенности от воздействий внешних факторов. Поэтому такие пускатели можно устанавливать даже под открытым небом, что нельзя делать с контакторами.

Назначение устройств

Основным назначением пускателя является пуск и остановка 3-фазных электрических приводов, работающих на переменном токе. Кроме этого, эти устройства могут осуществлять коммутацию цепей для подачи питания на осветительные системы, обогревательное оборудование и прочее электрическое оборудование.

Что касается контактора, то он подходит для коммутации любых цепей постоянного и переменного тока.

Заключение

Исходя из выше сказанного, следует, что пускатель является своего рода одной из модификаций контактора и может применяться для определенных целей. Контакторы, конструкция которых модифицируется постоянно, могут применяться практически в любом случае для выполнения коммутации электрических цепей. Поэтому на современном потребительском рынке контакторы практически вытеснили пускатели и успешно выполняют их функции.

Источник: xn--g1aj0a6a.xn--p1ai

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

03.01.2014

Что такое контактор?

Контактором называют электромагнитный аппарат, переключающий контакты в главной цепи при включении вспомогательной цепи, содержащей обмотку электромагнита этого аппарата.

Контактор постоянного тока показан схематически на рис. 1, где 1 — катушка электромагнита, насаженная на железный сердечник, привернутый к железному угольнику 2; при прохождении тока по катушке 1 якорь 3 притягивается к сердечнику и замыкает главные контакты 4. Один из контактов (подвижный) снабжен пружиной 5.

Кроме главных контактов 4, контактор обыкновенно имеет еще вспомогательные контакты 6, называемые блокировочными, или блок-контактами. Они служат для того, чтобы работу одного контактора поставить в зависимость от работы другого, или, как говорят, сблокировать контакторы друг с другом. Такая блокировка осуществляется не только между контакторами, но и между контакторами и другими аппаратами.

Так, например, замыкание и размыкание блок-контактов контактора, происходящее вместе с замыканием или размыканием его главных контактов, можно использовать для подачи сигнала (светового или звукового) или для приведения в действие какого-либо другого аппарата, включенного в цепь, проходящую через блок-контакты.

На рис. 2 представлен общий вид контактора постоянного тока в выключенном положении, т. е. с якорем, оттянутым пружиной.

При прохождении тока по катушке 4 (по цепи управления) якорь 5 притягивается к сердечнику 3 и контакты 6 (подвижный) и 7 (неподвижный) замыкаются. Образующаяся при этом цепь главного тока показана на рис. 3 стрелками и пунктиром. Сердечник 3 привернут к железному угольнику, к которому крепятся направляющая пластина 12 и соединительная пластина 13, имеющая винт 14 для регулировки пружины 10.

При разрыве цепи управления якорь возвращается пружиной 10 в исходное положение: контакты 6—7 размыкаются и главная цепь тока прерывается. Перемещение якоря пружиной 10 ограничено шпилькой 11.

Искрогасительная катушка 15, включенная в цепь главного тока, образована несколькими витками медной шины. Катушка надета на железный сердечник 1, снабженный двумя башмаками 2, охватывающими с двух сторон искрогасительную камеру (на рисунке последняя не видна).

Башмаки 2 на рисунке подняты, чтобы были видны контакты 6—7. Во время нормальной работы контактора башмаки опущены и на них надета искрогасительная камера, которая представлена отдельно на рис. 4.

Искрогасящее устройство в контакторе необходимо для ускорения разрыва (гашения) электрической дуги, образующейся между главными контактами при выключении контактора.

Магнитное поле, создаваемое искрогасительной катушкой, взаимодействуя с током электрической дуги, смещает последнюю в поперечном направлении, т. е. растягивает и разрывает («выдувает») ее.

Подвижный контакт 6 (см. рис. 2) имеет пружину 9, а неподвижный контакт 7 привинчен к стойке 8. Главные контакты делаются из красной меди. Они сконструированы таким образом, что при замыкании и размыкании подвижный контакт перекатывается по неподвижному (рис. 5).

Это предотвращает сваривание контактов и обеспечивает хорошее притирание и очистку контактных поверхностей от плохо проводящей ток пленки, всегда образующейся на контактах при работе контактора.

Катушка контактора (ее называют «втягивающей») включается в сеть, как указано на рис. 6 (схема контактора), при помощи управляющего реле, где НК — катушка, ГК — главные контакты контактора, а БК — контакты реле. Катушки контакторов обычно имеют весьма значительное сопротивление, потребляемый ею ток не превышает десятых долей ампера, поэтому применение контакторов не связано с большой затратой электроэнергии.
В зависимости от схемы управления электродвигателем применяются контакторы с нормально открытыми или нормально закрытыми главными контактами, с нормально открытыми и нормально закрытыми блок-контактами.

Контакты называются нормально открытыми (н. о.), если они разомкнуты при отсутствии тока в катушке контактора, и нормально закрытыми (н. з.), если при отсутствии тока в катушке контактора они замкнуты.

У контакторов с выдержкой времени (таймтакторов) переключение главных контактов происходит не сразу после включения управляющей цепи, а с некоторой выдержкой времени.

Для этого таймтакторы снабжены двумя намагничивающими катушками: втягивающей 2 и удерживающей 1, расположенными по обе стороны от оси вращения якоря и принадлежащими двум магнитным системам I и II, оказывающим на якорь противоположные действия, что схематически показано на рис. 7. Катушка I, притягивая к себе нижнюю часть якоря, стремится разомкнуть главные контакты контактора, а катушка 2, притягивая к себе верхнюю часть якоря, стремится, наоборот, замкнуть их. Обе катушки присоединяются к сети параллельно.

Главные контакты контактора с выдержкой времени могут замкнуться лишь тогда, когда действие магнитной системы II окажется сильнее действия магнитной системы I, т. е. когда притягивающим действием катушки 2 будет преодолено задерживающее действие катушки 1 (и пружины, держащей контакты разомкнутыми).

Если мы замкнем цепь удерживающей катушки 1 накоротко, т. е. выведем ее из цепи, то в силу явления самоиндукции ток в замкнутой накоротко катушке 1 исчезает не сразу, а по истечении некоторого промежутка времени. По истечении этого времени магнитный поток катушки 1 исчезнет и задерживающее действие ее прекратится. Только после этого катушка 2 сможет притянуть якорь и произвести замыкание главных контактов.

Читайте также:  Цвета проводов в электрике 220

Если схема управления электродвигателем предусматривает выведение катушки 1 из цепи не путем замыкания катушки накоротко, а путем разрыва ее цепи, то в этом случае для обеспечения выдержки времени на сердечник катушки 1 надевают медную гильзу.

При спадании тока (и магнитного потока), протекающего по катушке 1, в медной гильзе, рассматриваемой в качестве одного замкнутого витка провода, индуктируется ток. Согласно правилу Ленца этот ток будет противодействовать вызвавшей его причине, т. е. будет противодействовать спаданию магнитного потока в сердечнике электромагнита.

Следовательно, устранение действия магнитной системы I на некоторое время задержится и главные контакты замкнутся не сразу.

Контактор с выдержкой времени, как и простой контактор, также имеет блок-контакты.

Контакторы переменного тока значительно отличаются от контакторов постоянного тока. Они, как правило, изготавливаются трехполюсными. Магнитопровод этих контакторов состоит из Ш-образного сердечника и такого же якоря. Сердечник, так же как и якорь, выполняется не сплошным, а набирается из тонких листов трансформаторной стали, покрытых изоляционным лаком.

У контакторов переменного тока дугогасительных катушек не делают. Для скорейшего гашения дуги применяют дугогасительные камеры с решетками, подобные камерам автоматических выключателей. Существенной особенностью этих контакторов является наличие на их магнитопроводе короткозамкнутого витка из медной проволоки.

При периодическом изменении величины переменного тока по синусоиде в момент перемены направления тока в катушке магнитный поток ее уменьшается до нуля. В этот момент якорь стремится оторваться от сердечника катушки, но из-за быстроты процесса изменения тока он отпасть не успевает и возникает вибрация подвижной системы, сопровождающаяся сильным гудением контактора.

Во время спадания тока при наличии короткозамкнутого витка в нем индуктируется ток самоиндукции, препятствующий спаданию магнитного потока. Поэтому при переходе основного тока катушки через нулевое значение магнитный поток ее нулю не равен и якорь контактора удерживается в притянутом положении.

Индуктивное сопротивление катушек, включенных в цепь переменного тока с железом, зависит от величины воздушного зазора между сердечником и якорем. Чем больше зазор, тем меньше сопротивление. Если якорь контактора неплотно прилегает к сердечнику вследствие загрязнения соприкасающихся поверхностей, то катушка может сильно нагреться и выйти из строя. Поэтому за чистотой и состоянием соприкасающихся поверхностей магнитопровода контакторов переменного тока должно быть обеспечено постоянное наблюдение.

Источник: www.electroengineer.ru

Модульные контакторы. Виды и применение. Типы и работа

Для коммутации некоторых электрических приспособлений применяют коммутационные механизмы, работающие с помощью электромагнитного привода и дистанционного управления. Эти компактные электрические приборы называются модульные контакторы (МК).

Модульные контакторы назначение

МК являются электрическими аппаратами, используемыми для связки переменного либо постоянного тока. Устанавливают на динрейку и в зависимости от модели его можно дополнить какими-либо необходимыми аксессуарами. Так как в функции этих приборов не входит защита электроцепи от короткого замыкания или перегрузки, то её надлежит модернизировать, оборудовав плавкими предохранителями либо автоматическими выключателями.

Благодаря достаточно гибкой конструкции МК, их можно изменять, внедряя контакторные приставки, датчики времени, тепловым реле, блокировочные устройства и прочее оборудования управляющее электрическими проводниками. К примеру, при использовании пуска электродвигателей, цепь оснащают теплореле. С помощью реле выполняется отменная защита двигателя от перегрузки.

Основные составляющие контактора:
  • Полюс . Эта часть прибора осуществляет замыкание и размыкание тока в цепи. Обеспечивает беспрерывную работу без опасного повышения температурных границ. Полюс имеет подвижную часть, на которой располагается пружина, и неподвижные контакты, которые принимают давление пружины. Элемент покрыт серебряным напылением для увеличения срока службы и механической прочности.
  • Катушка . Этот элемент создаёт электромагнитное поле. Именно в нём осуществляет свои движения подвижная часть прибора, благодаря чему происходит замыкание электрической цепи.
  • Дополнительные контакторы . Эта группа элементов предназначена для индикации состояния МК, блокирования контактов, а также самоблокировки и взаимной блокировки. Контактная система оснащена выдержкой времени. Контакты бывают разных модификаций:
    — нормально открытые;
    — нормально закрытые;
    — перекидные контакты.
Важные составляющие узлы:
  • Электромагнитный механизм.
  • Дугогасительная система.
  • Контактная система.
  • Система вспомогательных контактов (блок-контактов).
Принцип работы МК

Работа МК базируется на замыкании (под действием магнитного поля) рабочих контактов.

Работа построена следующим образом:
  • Напряжение на катушку прибора подаётся сразу после его включения.
  • Чем больше насыщается катушка напряжением, тем сильнее прижимается магнитный якорь к сердечнику.
  • Контакты начинают размыкаться либо замыкаться в зависимости от начального состояния аппарата.
  • Вспомогательные контакты включают реверсивный ход и управляют катушкой.
  • Система гашения дуги выполняет функции токоограничителя при скачках напряжения и внезапном обрывании электрической цепи.
Использование модульных контакторов

МК широко применяют в домашней электропроводке. Их можно использовать для создания автоматического включения (выключения) электрических конвекторов в квартире либо доме при достижении указанной температуры в помещении. Это осуществляется посредством того, что на цепь питания электрообогревателей контакторы подают напряжение после того, как получают сигнал от реле температуры.

С помощью МК выполняется схема автоматического регулирования системой кондиционирования, осветительными устройствами, насосом скважины и пр. системами. Модульными контакторами обеспечивают автоматическое включение резерва (АВР) электроснабжения частного дома и квартиры.

С МК можно собирать традиционную и реверсивную схему регулирования электродвигателей. Традиционная схема представляет управление запуском и остановкой двигателя, а путём реверсивной изменяют направление вращения двигателя.

Добавочные контактные пары в МК разрешают эксплуатировать эти устройства вместе с другими приборами. Это позволяет наладить подачу сигнала из одного контактора на другой. Также благодаря контактным парам собирается схема сигнализации режима работы МК.

Чаще всего МК применяют для управления, а также коммутации разнообразных приводов и устройств (вентиляционного, обогревательного, осветительного и др.).

Классификация модульных контакторов

Существует целое изобилие модульных контакторов, которые различают по типу работы, техническим характеристикам, области использования, износостойкости, количеству полюсов, силе тока и прочих нюансах конструктивного исполнения.

По типу работы можно выделяют механические и электромагнитные приборы. Ныне большой популярностью пользуются электромагнитные МК. Они преобладают положительными моментами над прочими коммутационными устройствами, благодаря чему широко применяются в быту. К достоинствам электромагнитных аппаратов относится их бесшумность в работе, устойчивость к сильным вибрациям. Причём сами приборы не создают вибрации при переключении режимов.

Модульные контакторы бывают однофазные и двухфазные, ещё могут иметь от 1 до 4 полюсов. Поэтому выделяют одно-, двух-, трёх-, четырехполюсные контакторы. Приборы также различают по наличию дополнительных контактов. Ведь некоторые модели контакторов имеют вспомогательные контакты, а другие нет. Отличия есть и по роду тока, при этом выделяют МК постоянного и переменного тока.

Модульные контакторы предназначенные для коммутации цепи постоянного тока выпускаются в основном одно- и двухполюсные на силу тока 80-630 А и на максимальное напряжение равное 440 В. Трехполюсные приборы с током от 63 до 1000 А и замыкающими главными контактами используются для цепей переменного тока. Отличием этих двух контакторов является наличие дребезга контактов в устройствах переменного тока при включении, что вызывает сильный износ контактов. Это явный изъян данного типа аппаратов.

МК состоят из контактной системы и дугогасительной. Дугогасительная система представляет своеобразный ограничитель при разрыве электрической цепи.

Существует два основных типа МК, отличающихся способом разрыва сети:
  • Одинарные . Этот тип модульных приборов содержит электромагнитное устройство, которое эффективно осуществляет гашение дуги. Это МК постоянного тока, они предназначенные для сложных работ. Активно применяются в индукционных печах и железнодорожном оборудовании.
  • Сдвоенные . Этот тип МК эксплуатируется в тяжёлых условиях работ. Отличается от одинарных устройств — двойным разрывом дуги.

Типы модульных контакторов

Существуют следующие типы контакторов, которые имеют явные отличия:
  • Пускатель . Эти приборы считаются улучшенным типом контакторов, содержат следующие элементы:
    — вспомогательная контактная группа;
    — тепловое реле;
    автоматическую систему для пуска электродвигателя.
  • Автоматическая система бывает разных видов:
    — реверсивная;
    — нереверсивная;
    — с переключением обмоток;
    — без переключения обмоток.
  • Магнитный пускатель . Этот прибор представляет трёхполюсный контактор переменного тока. Оборудован МК двумя тепловыми реле, усовершенствующих защитную функцию.
  • Магнитный контактор . Двухпозиционный аппарат для частых выключений и включений при нормальных режимах силовых цепей.
  • Промежуточное реле . Это маломощный МК, увеличивающий в слаботочных цепях число контактов. Он рассчитан на огромное количество коммутаций.

Разные заводы-производители выпускают различные типы МК, которые отличаются конструктивными особенностями и назначением. Торговые марки определяют свой тип электромагнитным устройствам. Популярные модульные контакторы выпускаются фирмой АВВ для автоматизации оборудования зданий. В силовых цепях и цепях управления контакторы серии МТ и МF, распространены небольшие устройства для дистанционного управления КМЭ.

В больничных, офисных, промышленных, а также в жилых помещениях часто эксплуатируются модульные контакторы серии КМ.

Каждая фирма-производитель пользуется своей структурой обозначения приборов. Единства в маркировке МК нет, хотя между собой они не много похожи.

К примеру, прибор фирмы IEK (КМ хх х х АС/DC, где х — число) КМ20-20 АС:
  • КМ – контактор модульный.
  • 20 – номинальный ток.
  • 2 замыкающихся контактов.
  • размыкающихся контактов.
  • АС – род тока катушки.
Читайте также:  Реостатный выключатель света

Пример маркировки МК переменного тока серии КТ

Плюсы и минусы модульных контакторов

МК способны решить широкий спектр задач. Они удобны и быстрые в монтаже. А установленные схемы управления с помощью МК занимают мало места в распределительном щитке. Этот положительный момент обусловлен компактным конструктивным исполнением модульных электрических аппаратов. А благодаря их бесшумности, комфорт в помещении не будет нарушен, если аппарат установить прямо в квартирном щитке.

Также модульные контакторы имеют хорошую электробезопасность (2 класса), это говорит о безопасности для малоквалифицированных пользователей и профессионалов. Плюсом является ещё то, что МК можно подключать к любой сети и эксплуатировать при больших мощностях.

В основном модульные контакторы в день могут выполнять до 100 коммутационных операций, это явление можно отнести к недостаткам этих приборов.

Источник: electrosam.ru

Для чего нужны контакторы?

Электричество прочно вошло в нашу жизнь. Мы уже не представляем, как можно обходиться без него. Каждый день мы пользуемся электрическими приборами, включаем, отключаем их и не задумываемся, что происходит внутри приборов.

Все мы знаем, что необходимо использовать выключатель, чтобы зажегся свет. А если прибор работает в автоматическом режиме и должен самостоятельно включаться и выключаться, как, например, холодильник или кондиционер? Для дистанционного коммутирования или простым языком включения и отключения потребителей электричества, есть контакторы.

В быту контакторы мы не видим, поскольку контакторы являются составными частями различных приборов и только люди, которые профессионально занимаются электротехникой могут до них добраться. Основное использование контакторы нашли в профессиональной сфере — от тяжелого машиностроения до жилищно-коммунального хозяйства.

Все контакторы конструктивно похожи. Они состоят из подвижных и неподвижных контактов (подвижные контакты соединены с подвижной траверсой магнитной системы). Контактор управляется с помощью электромагнитной катушки. На катушку подаётся напряжение, возникает электромагнитное поле, которое преодолевая сопротивление пружины, притягивает подвижную часть магнитной системы вместе с закрепленными на ней подвижными контактами. Контакты смыкаются и потребитель подключается к электрической цепи.

Есть много серий (названий) контакторов. Каждая серия имеет свою специализацию. Среди них есть более универсальные серии, и узкоспециализированные, применяемые только в специальных случаях.

Основная последовательность номинальных токов контакторов компании EKF состоит из двух серий КМЭ PROxima и КТЭ PROxima и включает последовательность номинальных токов от 9 до 630А.

Контакторы КМЭ PROxima имеют ряд токов от 9 до 95А, управляются катушкой переменного тока, напряжением 230 или 400А — эти катушки идут в комплекте. Можно поменять катушки и получить контактор с катушками 24, 36, 110В переменного тока. Это достаточно универсальные контакторы — область их применений достаточно велика. Они могут применяться для управления трехфазными асинхронными двигателями, освещением, нагревательными установками и многим другим оборудованием, питаемым трехфазным током.

Если рассматривать массовость использования, то можно сказать, что до 90% всей вырабатываемой электрической энергией тратится в электродвигателях и 60% от этого количества в электродвигателях мощностью до 45кВт, которыми и управляют контакторы КМЭ PROxima. КМЭ PROxima — это самый массовый контактор. Технические характеристики КМЭ PROxima позволяют применять их и для освещения, где необходимо длительное время пропускать ток через контактор и использовать их для работы дискретной линии подачи в различных технологических процессах, где циклы включения-отключения могут достигать 2400 в час. Очень часто возникает необходимость в управлении единичным электрическим приводом. Это такие установки как местная вентиляция, различного вида ворота, не сложные насосы. В таких случаях кроме функции запуска и остановки необходимо защитить двигатель. Для этого используют пускатель. Пускатель — это контактор с тепловым реле. Контактор коммутирует электрическую цепь, а тепловое реле защищает электродвигатель от перегрузки, обрыва фазы и в конечном итоге от выхода из строя электродвигателя. Принцип действия теплового реле основан на разном коэффициенте расширения металлов при нагреве. Два таких металла объединяют в одну пластину. При нагреве такая пластина изгибается в строго определённую сторону и её изгиб зависит от величины нагрева. В тепловом реле через такую пластину проходит ток, и если ток выше допустимого, то биметаллическая пластина изгибается и, нажимая на рычаг отключает контакт, через который проходит питание контактора и контактор отключается.

В номенклатуре EKF имеются пускатели в корпусе КМЭ с РТЭ IP65 EKF PROxima с индикацией работы или без. Данные пускатели имеют кнопки «пуск» «стоп». Индикация необходима, когда управляемое оборудование находится далеко и визуально невозможно определить работает ли оно.

Второй по массовости контактор — это контактор КТЭ PROxima. Он рассчитан для работы с токами от 115 до 630А и катушкой управления 230, 400В. Поскольку коммутируемые токи значительно отличаются от токов КМЭ PROxima, то и КТЭ PROxima по внешнему виду массивнее и больше своего «младшего брата». Разница во внешнем виде обусловлена необходимостью применения больших поперечных сечений токоведущих частей, большей площади контакта главных контактов.

Применение контакторов КТЭ PROxima аналогично применению контакторов КМЭ, только коммутируемые токи значительно больше, однако есть и различие. КТЭ PROxima применяется в различного вида подъёмных механизмах — электрических кранах, кран-балках, тельферных подъемниках. В этих механизмах контакторы работают в особо тяжелых условиях. Пуск затруднен наличием нагрузки на подъёмном механизме, да и остановку крана зачастую производят подключением противотока, когда двигатель работает против движения груза, тем самым тормозя его. В такие моменты особая нагрузка ложиться на контактор — токи перегрузки достигают 10 — 12 номинальных токов контактора, но КТЭ PROxima рассчитан на работу в таких условиях, поэтому это вторая по массовости крупа контакторов, в силу распространённости электродвигателей мощностью свыше 45кВт.

В номенклатуре EKF есть миниконтактор МКЭ PROxima. Они рассчитаны на токи 6-16А, с катушкой управления 24, 230, 400В и дополняют собой контакторы КМЭ PROxima. Там, где есть ограничение по объему, там применяют миниконтакторы МКЭ PROxima — это такие приборы, как кондиционеры, холодильники, другие устройства с минимизированным рабочим пространством. Миниконтакторы могут быть установлены в пластиковые боксы совместно с модульным оборудованием и поэтому могут применяться в управлении теплыми полами, вентиляционными установками и многими другими трехфазными нагрузками.

Специально для применения совместно с модульным оборудованием в номенклатуре EKF имеется модульный контактор КМ PROxima. КМ PROxima рассчитан на работу с токами 16-63А и катушкой 230В переменного тока. Этот контактор отличается от других не только модульным исполнением корпуса, но и разнообразием программ коммутации. У него есть и два, и три и четыре главных контакта, которые могут быть как нормально открытыми, так и нормально закрытыми и различными смешанными вариантами.

Такое разнообразие коммутационных программ обусловило широкие возможности применения контакторов КМ PROxima. Это и управление маломощными двигателями, и управление освещением, включение различного коммунального оборудования — от электрических котлов до вентиляции. То есть их применяют и в промышленности и в домохозяйствах.

Контакторы КМЭп PROxima — это узкоспециализированный контактор с номинальными токами 9-95А. Катушка контактора рассчитана на работу с постоянным током напряжением 24, 110,220В. Его применение обусловлено наличием отдельных систем управления ответственных производственных процессов, которые используют постоянный ток и могут быть защищены от пропадания напряжения. Например, в московском метро система управления построена на постоянном токе напряжением 110В. Таким образом, в московском метро все контакторы работают на постоянном токе.

В 2015 году компания EKF ввела бюджетные линейки основных контакторов КМЭ Basic, и ПМ12 Basic. Основное их отличие в работоспособности. Контакторы серии Basic имеют работоспособность на 20% ниже, чем аналогичные контакторы PROxima, но и цена контакторов Basic ниже на 15% контакторов PROxima.

КМЭ Basic рассчитаны на токи от 9 до 95А. Имеют катушки управления 230, 400В. Они отличаются внешним видом от КМЭ PROxima — контактор выполнен в корпусе черного цвета. Здесь применён пластик прошлого поколения, тогда как КМЭ PROxima имеет серый корпус с улучшенными эксплуатационными характеристиками. Применение контакторов КМЭ Basic возможно в оборудовании, которое имеет достаточно длинные циклы включения-отключения — это различные ворота, местная вентиляция и другое оборудование, не требующее частых включений.

ПМ12 Basic рассчитаны на токи от 63 до 1000А, катушки управления 230, 400В. ПМ12 Basic имеют конструктив контакторов, который разрабатывался в середине прошлого века. Коммутационной износостойкостью они значительно уступают контакторам КТЭ PROxima. Контактор полностью соответствует сопроводительной документации и находит своё применение в оборудовании, где частота коммутаций не велика.

Мы рассмотрели всё предложение контакторов компании EKF. У нас максимально расширенная линейка контакторов и любой потребитель сможет найти у нас тот продукт, который ему нужен, как по техническим характеристикам, так и по ценовому диапазону.

Источник: www.elec.ru