Измерение сопротивления изоляции в электроустановках до и свыше 1000В
В электролаборатории “Электротехника” вы можете заказать измерение сопротивления изоляции в электроустановках до и свыше 1000В.
Цель проведения испытаний
Измерения в электроустановках до и свыше 1000В проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
Нормы сопротивления изоляции
- В соответствии с гл.1.8 ПУЭ (Правила устройства электроустановок) для электроустановок напряжением до 1000 В допустимые значения сопротивления изоляции:
- Согласно ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3; 3.1 (таблица 37), минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000 В :
Электрооборудование | Сопротивление изоляции в нагретом состоянии, МОм | |
нормальное | минимально допустимое | |
Электрические машины | 0,7 | 0,2 |
Магнитные станции, пусковые устройства | 0,5 | 0,2 |
Щиты (главные, аварийные, распределительные), пуль- ты управления (при отключенных внешних цепях, сиг- нальных лампах указателей заземления, вольтметрах и др.) напряжением, В: до 100 101-500 | 0,3 1,0 | 0,06 0,2 |
Аккумуляторные батареи (при отключенных приемниках) напряжением, В: до 24 25-220 | 0,1 0,5 | 0,02 0,1 |
Фидер кабельной сети напряжением, В: освещения: до 100 101-220 силовой 100-500 | 0,3 0,5 1,0 | 0,06 0,2 0,2 |
Цепи управления, сигнализации и контроля напряжением, В: до 100 101-500 | 0,3 1,0 | 0,06 0,2 |
4.2. Сопротивление изоляции кабелей и проводов. Виды изоляции.
Изолирующие оболочки кабелей и проводов не являются идеальными диэлектриками. Это означает, что через оболочку любого провода протекает ток утечки I, источни-
ком которого является генератор СЭС или любой другой источник электроэнергии.
Сопротивление оболочки провода протеканию упомянутого тока называется сопро-
R= ( 6.15 ),
где U – напряжение источника электроэнергии.
Рис. 6.6. Схемы электрических сетей постоянного (в) и переменного (б) тока с различными видами сопротивления изоляции
Различают 2 вида сопротивления изоляции ( рис. 6.6, а ):
1. отдельного провода относительно корпуса r( r);
2. между токоведущими жилами r .
Поэтому ток утечки Iимеет 2 составляющие:
I’= U / ( r+ r) ( 6.16 )
I”= U / (r ) ( 6.17 ),
I= I’+ I” ( 6.18 ) .
В сетях переменного тока ток утечки имеет активную и емкостную составляющие.
Наличие последней объясняется тем, что жила и корпус судна образуют своеобразные об
кладки конденсатора, между которыми заключен диэлектрик – оболочка кабеля.
Поэтому полное сопротивление Z изоляции провода относительно корпуса образо-
вано параллельно соединенными активным r и емкостным xсопротивлениями (рис. 6.6, б).
Токи утечки каждого элемента длины кабеля, замыкаясь через источник, образуют параллельные ветви. Поэтому чем длиннее линия, тем больше параллельных ветвей для указанных токов и тем меньше сопротивление изоляции линии.
Токи утечки создаются не только линиями электропередачи, но также источниками и приемниками электроэнергии через сопротивление изоляции обмоток электрических машин.
Поэтому одновременное включение большого числа приемников, каждый из кото-
рых имеет достаточно высокое сопротивление изоляции, может привести к значительному снижению сопротивления изоляции судовой сети.
Токи утечки, помимо тока жилы, вызывают дополнительный нагрев изоляции и ускоряют ее старение. Поэтому нагрев изоляции токоведущих жил кабелей и проводов не должен превышать пределов температур (ºС), допускаемых классом изоляции ( таблица 6.2 ).
Предельная температура изоляционных оболочек
Буквенное обозначение класса изоляции | Предельная температура оболочки |
А | |
Е | |
В | |
F | |
Н | |
С | > 180 |
Систематический контроль сопротивления изоляции может проводиться как при снятом напряжении, так и при его наличии на электрооборудовании.
Источник: studopedia.ru
Проверка сопротивления изоляции кабеля мегаомметром
Вот и отпуску конец. Сегодня рассмотрим тему взаимоотношения силового электрического кабеля и мегаомметра. Здесь будет присутствовать два вопроса: прозвонка и проверка сопротивления изоляции. В зависимости от вида мегаомметра (стрелочный или цифровой) будет отличаться и порядок действий.
Для чего проверяют сопротивление изоляции кабеля?
Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция – пластмассовая, резиновая, ПВХ, бумажная, масляная.
Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).
Сопротивление – это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.
Изоляция может ухудшаться по следующим причинам:
- старение изоляции в течении времени
- увеличенная влажность
- механические повреждения
- воздействие агрессивной среды
Допустимые значения сопротивления изоляции
Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:
- испытываются мегаомметром на 2500В на протяжении 1 минуты
- значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
- для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев
Порядок проверки сопротивления изоляции кабеля мегаомметром
Приходишь на объект, и видишь например следующую картину.
Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:
- жилы кабеля прозвонены и промаркированы (о прозвонке читайте тут)
- на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
- на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
- кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
- если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
- мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
- вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
- провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)
После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!
Измерение сопротивления изоляции кабеля мегаомметром
Порядок действий следующий (. КАБЕЛЬ ОБЕСТОЧЕН. ):
- Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
- Если есть оболочка, экран, броня – их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
- На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
- Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
- Снимаем с испытуемой жилы провод заземления
- Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
- На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
- Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки
Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно – объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.
Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) – он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:
Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.
Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.
В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром – это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).
Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей – это тема отдельной большой статьи.
В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.
Сохраните в закладки или поделитесь с друзьями
Источник: pomegerim.ru
Цели проведения замеров сопротивления изоляции
Замеры сопротивления изоляции проводят с целью определения фактических характеристик электроустановок и электросетей, а также для своевременного упреждения нештатных (аварийных) ситуаций, электротравматизма и пожаров. Логика проста: если изоляция не обеспечивает должных диэлектрических качеств, в электроустановке (или в сети) возникают токовые явления, следствием которых рано или поздно станут короткие замыкания со сверхтоками, чрезмерный нагрев, выход из строя или даже пожар.
Проверка изоляции наряду с замером сопротивления заземления относится к наиболее распространённым профилактическим мерам: данные работы проводят за малым исключением проводят практически во всех электроустановках и электросетях.
Помимо профилактической меры, результаты замеров сопротивления изоляции являются косвенным основанием для суждений о качестве монтажа и правильности схемы. Именно поэтому данный вид замеров производится при первичном подключении электричества, после реконструкции сетей и проведения капитальных ремонтов электроустановках.
Периодичность и нормы
Периодичность и граничные показатели сопротивления регламентируются правилами безопасной эксплуатации электроустановок потребителей (ПБЭЭП, прил. Э-1), а также правилами устройства электроустановок (ПУЭ, гл.1.8) Для большинства электролиний и оборудования до 1000В минимальный порог сопротивления составляет 0,5 МОм.
Правом устанавливать периодичность проведения замеров сопротивления изоляции наделены лица, составляющие (или утверждающие) график планово-предупредительных ремонтов, но не реже интервалов, указанных в ПБЭЭП.
Методики проведения замеров сопротивления изоляции
Каждая электролаборатория обязана разработать и утвердить программы и методики проведения замеров сопротивления изоляции в определённых видах электроустановок. Данные программы – это своего рода организационно-технические алгоритмы, придерживаться которых должен персонал ЭТЛ. Например, в рамках выполнения замеров сопротивления изоляции специалисты ЭТЛ оформляют наряд или распоряжение, обесточивают цепи, проводят внешний осмотр, подключают контрольно-измерительную аппаратуру (мегомметры) и фиксируют показания.
Оформление результатов
После проведения замеров сопротивления изоляции персонал электролаборатории оформляет результаты документально, в виде протокола, содержащего выводы о соответствии либо несоответствии фактических параметров нормируемым. Если вы заинтересованы в оперативности и в достоверных выводах, обращайтесь – Energy Systems располагает всем необходимым для выполнения контрольно-испытательных работ.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.
Источник: energy-systems.ru