Генератор постоянного тока
Современные условия развития производственной сферы предполагают использование большого количества электроэнергии в различных ее видах. Как правило, мы слышим о широком распространении и востребованности переменного тока, однако, во многих сферах используется и постоянный.
Для его получения используется особый вид энергогенерирующего оборудования – генератор постоянного тока. Данное устройство строится на принципе преобразования механической энергии в электрическую.
Как и другим источникам энергии, генератору постоянного тока свойственны такие основные характеристики, как:
- Номинальное напряжение;
- Номинальный ток;
- Мощность;
- Частота вращения.
В частности, показатели мощности таких установок могут очень существенно колебаться и находятся в диапазоне от нескольких КВт до 10 МВт.
Устройства данного типа, в свою очередь, подразделяются на 2 основные группы в зависимости от способа возбуждения:
- Генераторы с независимым возбуждением;
- Генераторы с самовозбуждением.
В первом случае обмотка возбуждения питается от посторонних источников энергии в виде вспомогательных генераторов или аккумуляторов. Также при небольших мощностях в качестве источника питания используется магнитоэлектрический принцип.
Во втором случае обмотка питается от энергии, вырабатываемой самим генератором.
Устройство генератора постоянного тока
Принципом, на котором основывается работа генератора постоянного тока, является электромагнитная индукция и устройство самой установки включает в себя несколько основных узлов.
- Неподвижная индуктирующая часть;
- Вращающаяся индуктируемая часть – якорь.
Неподвижная часть включает главные и дополнительные полюса, а также станину. Полюса представляют собой стальные сердечники с размещенными на них катушками с обмоткой возбуждения, как правило, из медного провода.
Вращающийся якорь включает стальной сердечник с медной обмоткой и коллектор.
Впоследствии при работе установки постоянный ток проводится через обмотку возбуждения и происходит образование магнитного потока полюсов.
Обе части генератора объединяются в одну цепь при помощи специальных неподвижных щеток из графита или графитного сплава.
Применение генераторов постоянного тока в жизни
Во многих сферах промышленности широко используются источники постоянного тока, что обусловлено особенностями технологического процесса и на сегодня является безальтернативным вариантом.
В частности, востребованы генераторы постоянного тока в электролизной промышленности, металлургии. Кроме того, часто такие установки применяют на судах, тепловозах, трамваях и в других направлениях транспортной сфере.
В металлургии установки постоянного тока необходимы для использования в работе прокатных станов.
Вам нужна дешевая дизельная электростанция? Посмотрите наш каталог ДГУ по специальной цене.
Возможно, будет выгоднее купить дизельную электростанцию, чем брать ее в аренду.
Источник: www.brizmotors.ru
Первый генератор постоянного тока, или что такое динамо-машина?
В позапрошлом веке, динамо-машиной называли генератор постоянного тока. Со временем промышленные генераторы, были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и очень удобного для передачи тока на большие расстояния с незначительными потерями.
Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это — генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».
Динамо-машина для велосипеда
Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» — простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.
Диск Фарадея
Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.
Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.
Первый генератор переменного тока
Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.
Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку — на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.
В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.
Генератор Холмса
Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».
Между тем, машины с постоянными магнитами отличались одним существенным недостатком, магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.
В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, — магнит возбуждения просто монтировался на валу генератора.
>
Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.
Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.
В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации. Однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.
Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.
Генератор постоянного тока Сименса
В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.
Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.
Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.
Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история…
Источник: powercoup.by
Как устроен генератор постоянного тока
Одним из наиболее распространенных электрических устройств является генератор постоянного тока, принцип действия которого основан на таких понятиях, как электромагнитная сила и индукция. Согласно принципу обратимости электрических машин, данное устройство, в конкретных условиях, может выполнять функцию и генератора и электродвигателя. Поэтому, устройство генератора постоянного тока, следует рассматривать в классическом варианте.
Составные части генератора
Генератор постоянного тока состоит из двух основных частей – якоря и станины, где расположены электромагниты. На внутренней стороне станины устанавливаются сердечники полюсов, концы которых имеют полюсные наконечники. С помощью наконечников, магнитная индукция более равномерно распределяется по окружности якоря.
На сердечники надеваются катушки, входящие в состав обмотки возбуждения. Сама станина играет роль замыкающей части. Здесь расположены еще и дополнительные полюса, которые находятся между главными полюсами. Их катушки имеют последовательное соединение с якорем. Дополнительные полюса позволяют избежать появления искр на щетках коллектора, что значительно улучшает коммутацию. Вращающаяся часть устройства называется ротором или якорем, имеющим цилиндрическую форму. Материалом для него служит листовая электротехническая сталь, толщиной до 1 мм. В пазах якоря размещена обмотка, которая соединяется в цепь с коллектором, установленным на якорном валу. Коллектор представляет собой ряд медных пластин, изолированных между собой. Коллектор взаимодействует с угольными или медными щетками, неподвижно установленными в специальных щеткодержателях. Принцип действия генератора
Генератор постоянного тока, принцип действия которого базируется на электромагнитной силе, содержит две электрические цепи –якоря и возбуждения. С помощью постоянного тока, проходящего через цепь возбуждения и обмотку возбуждения, происходит создание основного магнитного поля. В том случае, когда у генератора не два полюса, а четыре, то для обмотки якоря необходимо четыре щетки, попарно соединенные между собой. С помощью этих щеток обмотка разделяется на параллельные ветви, в количестве двух пар.
Уже отмечались обратимые процессы генератора постоянного тока. Когда к первичному двигателю прикладывается посторонняя механическая сила, происходит возбуждение магнитного поля и в якоре появляется электродвижущая сила. После этого, с помощью коллектора и щеток, постоянный ток уходит к внешней цепи. В этом случае устройство работает в качестве генератора. Когда к якорю и обмотке возбуждения подключается постоянное напряжение, то проходящий через обмотку электрический ток, взаимодействует с полем, создавая вращающий момент, который приводит якорь в движение. В таком варианте, устройство функционирует как электродвигатель.
Источник: studopedia.ru
Принцип действия генератора постоянного тока – вспоминаем курс школьной физики
Приветствует тебя, наш любимый и любознательный читатель. Сегодня мы погрузимся в мир теоретики, подтвержденной, естественно, практикой, и будем вспоминать, а кто-то может и узнавать, как устроен генератор постоянного тока.
Вводная часть
Работа над этими устройствами была начата еще в далеком 1827 году.
Немного истории
Первым экспериментировать с электромагнитными вращающимися машинами начал венгерский физик А.И. Йедлик, которые он назвал самовращающимися роторами. Его прототип был завершен к 1856 году, в котором обе части (статическая и вращающаяся) были электромагнитными.
>
- Однако Йедлик был далеко не единственным ученым, работавшим в этом направлении. В 1831 году был открыт принцип работы электромагнитного генератора. Сделал это Майкл Фарадей. Принцип, открытый ученым, был назван в честь его имени и заключается он в том, что при перемещении проводника перпендикулярно магнитному полю, на его концах образовывалась разность потенциалов.
- Изобретатель построил первый генератор, который был назван диском Фарадея. Устройство было униполярным генератором, использовавшим медный диск, который вращался между полюсами магнита (подковообразного). Конструкция устройства была крайне несовершенна, и ему еще предстояло обрести окончательный облик, но в будущем.
Интересно знать! Конструктивные изменения в эти приборы вносятся до сих пор, с появлением новых магнитов.
Динамо-машина
Первый генератор постоянного тока, который стало возможно использовать для промышленных целей – это динамо-машина. Работа этого устройства основана на электромагнетизме – оно преобразует механическую энергию в постоянный, пульсирующий ток. Первый такой агрегат был построен И. Пикси в 1832 году.
- Именно этот агрегат, естественно после совершения многих открытий, стал прообразом современных двигателей постоянного тока, синхронных двигателей, генераторов переменного тока и прочего.
- Состояла она из статора (создающего электромагнитное поле) и обмоток, которые вращаются внутри.
- Сегодня динамо-машины – это скорее раритет, чем действующие устройства. Дело в том, что в современном мире подавляющее большинство приборов рассчитано на работу от переменного тока, тогда как на заре электротехники ученые считали его просто опасным, пока свои наработки не открыл миру великий русский ученый Павел Яблочков, но это уже другая история.
Интересный факт обратимости электромашин
В 1833 году русский ученый Э.Х. Ленц указал на то, что электрические машины обратимы. Другими словами: одна машина способна работать как электродвигатель, если ее запитывать, и быть одновременно генератором тока, при условии что ротор устройства будет приведен в движение другой движущей силой (в то время для этого подходили паровые агрегаты).
В 1838 году Ленц доказал свои предположения опытным путем, испытывая электромотор Якоби.
В 1832 году появился на свет первый генератор, работающий по принципу электромагнитной индукции. Сделали его французы, братья Пиксин. Однако их устройством было очень сложно пользоваться, так как при вращении массивного постоянного магнита, в двух катушках возникал переменный ток.
На первых этапах разработок использовались, как вино, постоянные магниты. Начиная с 1851 года их стали заменять электромагнитами, что дало новый толчок к развитию. В это же время был открыт принцип самовозбуждения генераторов постоянного тока. Первые патенты на генераторы с самовозбуждением были выданы 1866 году.
В общем, мы немного отвлеклись от темы сегодняшней стать. Как понятно, развитие генераторов постоянного тока, как и любого другого серьезного изобретения, было долгим и вобрало в себя мысли многих великих умов прошлого, прежде чем человеку стали досконально известны все принципы его работы, и была разработана «идеальная схема».
Основы работы устройства
Давайте же, наконец, разберем принцип действия и устройство генератора постоянного тока.
Inductio
Итак, как вы уже поняли, генераторы – это электрические машины, способные преобразовывать механическую энергию в электрическую. В основу работы этих устройств положен принцип электромагнитной индукции.
Сам принцип заключается в том, что если в магнитном поле перемещается проводник (при этом его движения должно быть перпендикулярным магнитному потоку, то есть пересекать его), либо же сам постоянный магнит смещается относительно проводника, то внутри проводника возникает ЭДС (электродвижущая сила) индукции.
Если при этом проводник включить в замкнутую цепь, то по ней потечет ток, называемый индуктивным. Опты установили, что величина этой силы изменяется в прямой зависимости от длины проводника, скорости его движения и величины индукции магнитного поля. При этом важно понимать, что ЭДС возникает только в случае пересечения магнитного поля, а не движения вдоль него.
Вспоминайте курс физики, а именно, правило правой руки, когда большой палец указывает направление движения проводника, если в ладонь входят силовые линии магнитного поля. При этом остальные вытянутые четыре пальца укажут вам направление действия ЭДС – именно в этом направлении потечет ток в перемещаемом проводнике.
Источник: elektrik-a.su
Генераторы тока: переменного и постоянного
Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности – всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока – важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.
Что такое генератор тока
Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель – именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин – генераторы постоянного или переменного тока.
>
В чем разница между постоянным и переменным током
Вспоминаем уроки физики. Электроток – заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).
Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке – переменный, в батарейке – постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт – всё постоянный, всё что от 100 до 500 Вольт – переменный.
Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.
В чем конструктивная разница между генераторами
Несмотря на то, что конечный результат работы электростанций один – потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.
Особенности конструкции генераторов переменного тока
Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.
Особенности конструкции генератора переменного тока
Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.
Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.
Асинхронным машинам характерны:
- отсутствие электрической связи с ротором;
- вращение якоря под воздействием остаточного механизма статора;
- измененная электрическая нагрузка на статоре.
Такие агрегаты могут быть однофазными и трехфазными.
Принцип работы генератора постоянного тока
Простейший по конструкции генератор работает следующим образом:
- Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
- Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
- Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
- С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.
Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.
К преимуществам генераторов постоянного тока относят:
- небольшой вес и компактность агрегата;
- возможность использовать в экстремальных условиях;
- отсутствие потерь, связанных с вихревыми токами.
Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.
Принцип работы генератора переменного тока
Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.
Основные достоинства генераторов переменного тока
В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.
Плюсами использования генераторов переменного тока являются:
- большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
- выработка электроэнергии на низких скоростях вращения ротора;
- проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
- конструкция токосъемного узла отличается большей надежностью;
- больше эксплуатационный ресурс и меньше эксплуатационные затраты.
Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.
Где применяются генераторы постоянного и переменного тока
Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность – не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.
Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети – это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования.
Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.
Источник: mototech.ru