Как работает асинхронный двигатель

Асинхронный двигатель. Принцип работы. Виды асинхронного двигателя

Одним из самых распространённых электродвигателей, который используется в большинстве устройств электропривода, является асинхронный двигатель. Этот двигатель называют асинхронным (не-синхронный) по той причине, что его ротор вращается с меньшей скоростью, чем у синхронного двигателя, относительно скорости вращения вектора магнитного поля.

Необходимо объяснить, что такое синхронная скорость.

Синхронная скорость – это такая скорость, с которой вращается магнитное поле в роторной машине, если быть точным, то это угловая скорость вращения вектора магнитного поля. Скорость вращения поля зависит от частоты протекающего тока и количества полюсов машины.

Асинхронный двигатель всегда работает на скорости меньшей, чем скорость синхронного вращения, потому как магнитное поле, которое образовано обмотками статора, будет генерировать встречный магнитный поток в роторе. Взаимодействие этого сгенерированного встречного магнитного потока с магнитным потоком статора сделает так, что ротор начнёт вращаться. Так как магнитный поток в роторе будет отставать, то ротор никогда не сможет самостоятельно достигнуть синхронной скорости, то есть такой же с какой вращается вектор магнитного поля статора.

Существует два основных типа асинхронного двигателя, которые определяются по типу подводимого питания. Это:

  • однофазный асинхронный двигатель;
  • трёхфазный асинхронный двигатель.

Следует заметить, что однофазный асинхронный двигатель не способен самостоятельно начинать движение (вращение). Для того, чтобы он начал вращаться, необходимо создать некоторое смещение из положения равновесия. Это достигается различными способами, с помощью дополнительных обмоток, конденсаторов, переключений в момент пуска. В отличие от однофазного асинхронного двигателя, трёхфазный двигатель способен начинать самостоятельное движение (вращение) без внесения каких-либо изменений в конструкцию или условия пуска.

От двигателей постоянного тока (DC) асинхронные двигатели переменного тока (AC) конструктивно отличаются тем, что питание подаётся на статор, в отличие от двигателя постоянного тока, в котором через щёточный механизм подаётся питание на якорь (ротор).

Принцип работы асинхронного двигателя

Подавая напряжение только на обмотку статора, асинхронный двигатель начинает работать. Интересно знать, как это работает, почему так происходит? Это очень просто, если понять, как происходит процесс индукции, когда в роторе индуцируется магнитное поле. Например, в машинах постоянного тока, приходится отдельно создавать магнитное поле в якоре (роторе) не через индукцию, а посредством щёток.

Когда мы подаём напряжение на обмотки статора, в них начинает протекать электрический ток, который создаёт магнитное поле вокруг обмоток. Далее, от многих обмоток, которые расположены на магнитопроводе статора формируется общее магнитное поле статора. Это магнитное поле характеризуется магнитным потоком, величина которого изменяется во времени, кроме этого направление магнитного потока меняется в пространстве, а точнее оно вращается. В итоге получается, что вектор магнитного потока статора вращается как раскрученная праща с камнем.

В полном соответствии с законом электромагнитной индукции Фарадея, в роторе, который имеет короткозамкнутую обмотку (короткозамкнутый ротор). В этой роторной обмотке будет протекать наведённый электрический ток, так как цепь замкнута, и она находится в режиме короткого замыкания. Этот ток точно также как и питающий ток в статоре будет создавать магнитное поле. Ротор двигателя становится магнитом внутри статора, который имеет магнитное вращающееся поле. Оба магнитных поля от статора и ротора начнут взаимодействовать, подчиняясь законам физики.

Так как статор неподвижен и его магнитное поле вращается в пространстве, а в роторе индуцируется ток, что фактически делает из него постоянный магнит, подвижный ротор начинает вращаться потому, как магнитное поле статора начинает его толкать, увлекая за собой. Ротор как бы сцепляется с магнитным полем статора. Можно сказать, что ротор стремится вращаться синхронно с магнитным полем статора, но для него это недостижимо, так как в момент синхронизации магнитные поля компенсируют друг друга, что приводит к асинхронной работе. Другими словами при работе асинхронного двигателя ротор скользит в магнитном поле статора.

Скольжение может быть как с запаздыванием, так и с опережением. Если происходит запаздывание, то имеем двигательный режим работы, когда электрическая энергия преобразуется в механическую энергию, если скольжение происходит с опережением ротора, то имеем генераторный режим работы, когда механическая энергия преобразуется в электрическую.

Создаваемый крутящий момент на роторе зависит от частоты переменного тока питания статора, а также от величины напряжения питания. Изменяя частоту тока и величину напряжения можно влиять на крутящий момент ротора и тем самым управлять работой асинхронного двигателя. Это справедливо как для однофазных, так и трёхфазных асинхронных двигателей.

Виды асинхронного двигателя

Однофазный асинхронный двигатель подразделяется на следующие виды:

  • С раздельными обмотками (Split-phase motor);
  • С пусковым конденсатором (Capacitor start motor);
  • С пусковым конденсатором и рабочим конденсатором (Capacitor start capacitor run induction motor);
  • Со смещённым полюсом (Shaded-pole motor).

Трёхфазный асинхронный двигатель делится на следующие виды:

  • С короткозамкнутым ротором в виде беличьей клетки (Squirrel cage induction motor);
  • С контактными кольцами, фазным ротором (Slip ring induction motor);

Как было упомянуто выше, однофазный асинхронный двигатель не может самостоятельно начинать движение (вращение). Что следует понимать под самостоятельностью? Это когда машина начинает работать автоматически без какого-либо влияния из внешней среды. Когда мы включаем бытовой электроприбор, например вентилятор, то он начинает работать сразу же, от нажатия клавиши. Необходимо отметить, что в быту используется однофазный асинхронный двигатель, например двигатель в вентиляторе. Как же происходит такой самостоятельный запуск, если выше сказано, что такой тип двигателей его не допускает? Для того, чтобы разобраться в этом вопросе надо изучить способы пуска однофазных моторов.

Почему трёхфазный асинхронный двигатель самозапускающийся?

В трёхфазной системе каждая фаза относительно двух других имеет угол равный 120 градусов. Все три фазы, таким образом, расположены равномерно по кругу, круг имеет 360 градусов, а это три раза по 120 градусов (120+120+120=360).

Если рассмотреть три фазы, А, B, C, то можно заметить, что лишь одна из них в начальный момент времени будет иметь максимальное значение моментального значения напряжения. Вторая фаза будет увеличивать значение своего напряжения вслед за первой, а третья фаза будет следовать за второй. Таким образом, мы имеем порядок чередования фаз A-B-C по мере нарастания их значения и возможен другой порядок в порядке убывания напряжения C-B-A. Даже если записать чередование иначе, например вместо A-B-C, написать B-C-A, то чередование останется прежним, так как цепочка чередования в любом порядке образует замкнутый круг.

Как же будет вращаться ротор асинхронного трёхфазного двигателя? Так как ротор увлекается магнитным полем статора и скользит в нем, то совершенно очевидно, что ротор будет двигаться в направлении вектора магнитного поля статора. В какую сторону будет вращаться магнитное поле статора? Так как обмотка статора трёхфазная и все три обмотки расположены равномерно на статоре, то образованное поле будет вращаться в направлении чередования фаз обмоток. Отсюда делаем вывод. Направление вращения ротора зависит от порядка чередования фаз обмоток статора. Изменив порядок чередования, фаз мы получим вращение двигателя в противоположную сторону. На практике, для изменения вращения двигателя достаточно поменять на местами две любые питающие фазы статора.

Почему однофазный асинхронный двигатель не начинает вращаться самостоятельно?

По той причине, что он питается от одной фазы. Магнитное поле однофазного двигателя является пульсирующим, а не вращающимся. Основная задача запуска заключается в создании из пульсирующего поля вращающегося. Эта проблема решается с помощью создания смещения фазы в другой обмотке статора с помощью конденсаторов, индуктивностей и пространственного расположения обмоток в конструкции двигателя.

Необходимо отметить, что однофазные асинхронные двигатели эффективны в использовании при наличии постоянной механической нагрузки. Если нагрузка меньше и двигатель работает, не достигая своей максимальной нагрузки, то его эффективность значительно снижается. Это является недостатком однофазного асинхронного двигателя и поэтому, в отличии от трёхфазных машин, их применяют там, где механическая нагрузка постоянна.

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

Это сайт рассказывает и объясняет теоретические и практические таких предметов как: электротехника, механика, автоматизация, теория управления и регулирования, электроника, проектирование радиоэлектронной аппаратуры, энергетика и безопасность и т.д.

Источник: electricity-automation.com

Как работает асинхронный электродвигатель

Электродвигатели, которые работают от сети переменного тока, называют асинхронными. Такое определение они получили из-за особенностей взаимодействия магнитных полей статора и ротора, в результате которого их скорость вращения различается.

Устройство этих электрических машин проще, чем работающих на постоянном токе, поскольку их статор не имеет электрического соединения с внешними устройствами, осуществляемого посредством токосъемных колец – коллектора, за что они получили и свое второе название «бесколлекторные электродвигатели».

Пальма первенства в их изобретении принадлежит русскому инженеру М. О. Доливо-Добровольскому, создавшему первый действующий трехфазный двигатель в 1890 году. Стоит отметить, что его конструкция не претерпела коренных изменений на протяжении более ста лет.

Читайте также:  Как выбрать узо по мощности

Почему он вращается

Принцип работы электродвигателя переменного тока основан на феномене возникновения вращающегося магнитного поля, в двух или трех соленоидах, определенным образом ориентированных в пространстве.

Направление вектора электромагнитного поля определяется правилом левой руки, согласно которому четыре пальца указывают направление движения тока, а пятый (большой) – движения самого проводника под действием сил электромагнитной индукции, входящих в открытую ладонь.

Если соленоид один, то при пропускании через него переменного тока стальной сердечник совершает колебательные движения. Чтобы он смог совершить оборот на 360°, нужны минимум две катушки, расположенные перпендикулярно друг другу, из-за чего суммарный вектор силы электромагнитной индукции будет описывать окружность.

Лучший, более стабильный, результат получается при использовании трех соленоидов, расположенных под углом друг к другу в 120°. Сдвиг фазы тока в катушках соленоида может быть достигнут не только позиционированием, но и включением в цепь одного из них активной нагрузки. Например, конденсатора.

Почему он асинхронный

Магнитное поле статора наводит в сердечнике ротора электрический ток, в результате чего он обзаводится собственным. Его полюса стремятся притянуться к тем, которые его породили, но это движение никогда не завершится по двум причинам:

  1. При совпадении полюсов пропадает разница электрических потенциалов между деталями машины, из-за чего ток в роторе прекращает течь, магнитное поле исчезает, а вал затормаживается. Эта своеобразная пульсация частоты вращения более выражена в двигателях, работающих от одной или двух фаз. Поэтому три катушки предпочтительнее.
  2. Статор больше ротора на величину магнитного зазора, поэтому создаваемое им магнитное поле имеет большую угловую скорость относительно центра вала.

Конструкция асинхронного электродвигателя

Оптимальным конструкторским решением расположения соленоидов является их размещение на внутренней поверхности цилиндра (трубы), внутри которого находится металлический вращающийся сердечник. Первый, поскольку он неподвижный, назвали статором электрической машины, а второй – ротором.

Постоянство расстояния между этими частями, называемого магнитным зазором, обеспечивается двумя крышками с подшипниками качения в центре. У асинхронных двигателей он не превышает трех миллиметров, поскольку при больших значениях сила электромагнитного взаимодействия между ротором и статором ослабевает настолько, что вал останавливается.

Конструкция ротора

Утверждение, что все асинхронные – это бесколлекторные электродвигатели, является допущением, в котором есть исключение. В действительности конструкция подвижной части электрической машины переменного тока бывает двух типов:

  1. Короткозамкнутый ротор.
  2. Ротор с фазными обмотками.

Короткозамкнутым называют ротор, устройство которого похоже на беличье колесо: он состоит из двух медных колец и нескольких толстых проводников, их соединяющих. Пространство между ними – сердечник – набирают из листов легированной стали, что уменьшает паразитные вихревые потоки. Во время пуска двигателя вращающееся поле статора провоцирует возникновение в нем электрического тока, а поскольку все проводники детали соединены друг с другом, возникает короткое замыкание.

Поэтому пусковой ток асинхронных двигателей в два — три раза номинального рабочего. После того как ротор тронется с места, ток расходуется на создание магнитного поля. Из-за простоты устройства мирятся и с падением напряжения, и с моментальным набором скорости, что делает нагрузочную характеристику двигателя жесткой.

Фазные обмотки на роторе устраивают для ликвидации всплеска пускового тока, что необходимо для защиты сети от перегрузки. Их три, они соединяются звездой, а свободные концы выводят на коллектор, состоящий из трех медных колец, разделенных диэлектриком и посаженных на хвостовик вала двигателя. Перед включением ротор шунтируют большим сопротивлением (реостатом), который гасит ток.

Передвигая ползунок реостата, допускают плавное возникновение тока в роторе и раскрутку вала двигателя. Асинхронность таких машин выше, поэтому у них ниже КПД. Зато появляется возможность плавной регулировки частоты вращения. Асинхронный двигатель с фазным ротором встречается очень редко из-за сложной конструкции, которая абсолютно идентична той, что имеет генератор переменного тока. Единственное его отличие – на коллекторные кольца подается постоянное напряжение, поэтому какую-то пару щеток можно замкнуть между собой.

Конструкция статора

Она двухслойная. Наружную «рубашку», которая обеспечивает механическую прочность конструкции, ранее отливали из чугуна. Сейчас все чаще используют легкие сплавы. Для эффективного отвода тепла на ней делают ребра жесткости. Внутри находится слой, набранный из листов легированной стали, которые изолированы друг от друга диэлектрическим лаком. На его внутренней поверхности устроены пазы. В них укладываются обмотки – медный проводник из нескольких витков, которые изолированы друг от друга во избежание пробоя, приводящего к снижению силы магнитного поля и аварии машины. Зазор между статором и ротором очень мал, поэтому витки скрыты в толще металла, чтобы не мешать вращению.

Однофазные двигатели

Однофазный асинхронный двигатель отличается лишь количеством статорных обмоток, которых две. Они всегда включены параллельно и расположены перпендикулярно друг другу. Для обеспечения начального фазного сдвига в цепь одной из них включена активная нагрузка. Обычно бумажный конденсатор большой емкости. После набора оборотов одна из обмоток отключается. Так делается в двигателях мощностью свыше пятидесяти ватт. У маломощных машин вторая обмотка выполняется короткозамкнутой. Фазу сдвигает индуцированный противоток.

Управление скоростью вращения

Явным недостатком асинхронных двигателей является сложность управления ими. Для изменения скорости вращения используются два метода:

  1. Частотное преобразование питающего напряжения. Практически никогда не применяется, поскольку по законам электротехники любая индуктивность (обмотка, соленоид, трансформатор) спокойно переносит только повышение частоты. При ее понижении она начинает работать в режиме нагревателя.
  1. Варианты с числом, способом укладки и размещением в пазах обмоток статора. Метод основан на том, что три фазных обмотки – это один условный двухполюсной вращающийся магнит, совершающий полный оборот за период, равный частоте сети. То есть, при самой простой конструкции статорной обмотки частота вращения будет равна 3 тыс. оборотов в минуту.

Если на статоре разместить шесть обмоток, сгруппировать их по три и подключить последовательно, то получим не два, а четыре полюса. Из-за этого частота вращения снизится в два раза – до 1500 оборотов в минуту.

При устройстве девяти обмоток, подключенных по тому же принципу, скорость снизится еще в два раза, до 750 оборотов в минуту, ведь полюсов станет шесть. Дальнейшее снижение скорости не производится, поскольку связано с большими техническими трудностями.

Нередко технология производства требует, чтобы привод мог вращаться с двумя или тремя скоростями. Эта проблема решается двумя путями:

  1. Подключением дополнительных независимых обмоток. Вместе с изменением скорости меняется и крутящий момент электродвигателя, поскольку индуктивность всякий раз разная.
  1. Устройством дополнительных выводов из одной обмотки. Так называемый метод Даландера. Имеет преимущество в том, что крутящий момент сохраняется неизменным.

Двухскоростной асинхронный электродвигатель имеет статорную обмотку, каждая из катушек поделена которой на две дополнительными выводами. Для наглядности обозначим 2U, 2V и 2W. В режиме тихого хода (1500 оборотов) обмотки соединены треугольником, питающее напряжение подается на выводы 1U, 1V и 1W, а 2U, 2V и 2W остаются свободными. Если требуется набрать 3 тыс. оборотов, то производится коммутация:

  • питание подается на 2U, 2V и 2W;
  • выводы 1U, 1V и 1W соединяются между собой.

В результате схема подключения обмоток меняется с «треугольника», в каждой стороне которого две последовательных катушки, на «звезду», в каждом луче которой две параллельных катушки. Число полюсов сократилось вдвое, а суммарная индуктивность осталась той же.

Существуют и трехскоростные электродвигатели, обмотки которых имеют по три вывода, поскольку должно получиться девять обмоток.

Обычно для управления многоскоростными асинхронными двигателями устраивают силовую релейную схему. Это позволяет изменять скорость вращения за несколько секунд.

Значимость изобретения в конце XIX века трехфазного асинхронного двигателя вполне можно сравнить с появлением компьютера и даже с полетом в космос. До сих пор человечество не сумело создать ничего более эффективного, ведь КПД этого устройства близко к ста процентам.

Источник: electriktop.ru

Что такое асинхронный двигатель и принцип его действия

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Читайте также:  Как собрать электрощиток

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя.
Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему. Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье. остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Источник: electroinfo.net

Асинхронный двигатель – принцип работы и устройство

Электрические установки, которые преобразуют энергию электрическую в энергию механическую, называются электродвигателями. Работают они от переменного тока 3-х фазной сети. В основном сегодня в промышленности и быту применяются асинхронные двигатели. Чтобы разобраться, как они работают, необходимо рассмотреть асинхронный двигатель – принцип работы его, конструкцию и возможности, которые приводят к изменению параметров. Итак, наша статья – устройство и принцип действия асинхронного электрического двигателя.

Конструкция

Буквально несколько слов о том, как устроен асинхронный двигатель. Итак, состоит он из двух частей, между которыми есть небольшой воздушный зазор. Первая часть неподвижная – это статор. Вторая подвижная (вращающаяся) – это ротор. Но и в той, и в другой есть сердечник и обмотка. Только обмотка статора, в данном случае, является первичной, то есть, именно на нее подается электрический ток, а ротора вторичной.

При этом статор состоит из сердечника, обмоток и корпуса (станины), последний чаще всего изготавливается из чугуна или алюминиевого сплава. Сердечник же асинхронного электродвигателя представляет собой конструкцию, собранную из листов специальной электромеханической стали толщиною от 0,35 мм до 0,5 мм. Такая конструкция используется специально, чтобы уменьшить действие вихревых токов, которые обязательно возникают под действием магнитного поля, которое вращается. Это поле созданно обмоткой статора. Если сердечник будет изготовлен из цельного металла, то произойдет его перемагничивание.

Именно в пазы сердечника и укладывается медный провод, который может быть однослойным или многослойным в плане укладки.

Что касается ротора, то, по сути, это вал, на который насажен сердечник. В качестве обмотки здесь используются стержни или из алюминия, или из меди, которые по торцам замыкаются кольцами. Сам он вращается в подшипниках, установленных а торцевых крышках. Вот такие особенности конструкции асинхронного двигателя.

Как работает

Начнем с самого главного, что в электродвигателях движение ротора создается за счет вращающегося магнитного поля, которое, в свою очередь, образуется за счет движения электрического тока в обмотке статора. Это и есть основной принцип действия асинхронного двигателя.

Если более глубоко начать разбираться в процессах, действующих внутри движка, то начнем с определения частоты вращения поля. Для этого можно воспользоваться формулой:

  • f – это частота электрической сети питания, измеряемая в герцах (Гц);
  • p – это количество пар полюсов.
Читайте также:  Как установить внутреннюю розетку

Образованное магнитное поле пронизывает собой сразу две обмотки: и статора, и ротора. Именно под ее действием образуется электродвижущая сила, которая и вращает моторный вал. При этом в статоре образуется электродвижущая сила самоиндукции. Она, во-первых, направлена против приложенного напряжения в подающей сети. Во-вторых, она же сдерживает ток.

Внимание! В короткозамкнутых электродвигателях обмотка ротора замкнута накоротко, отсюда и название. В фазных моделях обмотка замыкается через сопротивление.

Но как же при этом создается вращение вала? Все дело в том, что под действием электродвижущей силы ротора во вторичной обмотке появляется ток. Именно он, взаимодействуя с вращающимся магнитным полем, создает определенную электромагнитную силу, которая его и вращает. Кстати, направление действия можно определить по правилу левой руки.

У магнитного поля есть два полюса: северный и южный. Если берем за основу правило левой руки, то полюса вращаются относительно статора против часовой стрелки. То есть, они все время перемещаются. По сути, на этом и основан принцип работы асинхронного двигателя.

Итак, на проводник, где проводит электрический ток, действует электромагнитная сила, о которой уже выше упоминалось. Это суммарная величина, которая образует электромагнитный момент вращения. По-простому, момент движется по направлению вращения самого магнитного поля. Если момент имеет большую величину, то ротор будет обязательно вращаться.

Кстати, электродвижущая сила в обмотках зависит от разности частоты вращения ротора и магнитного поля. Вторая величина должна быть больше первой. И чем данная разница будет больше, тем выше электродвижущая сила. То есть, получается так, что асинхронный двигатель может работать только в том случае, если величина частоты вращения магнитного поля будет больше частоты вращения ротора. Это и есть основное условия работы.

Отсюда и название самого мотора, потому что вал вращается не синхронно с магнитным полем. Вот такой принцип работы и устройство.

Заключение по теме

Итак, в этой статье был разобран принцип действия асинхронного двигателя. Наша задача была по-простому рассказать обычным обывателям, как работает эта электрическая машина, почему она так называется, а также немного обозначить ее устройство. Скажем прямо, что все правила, заложенные в работу мотора, основаны на сложных физических законах, связанных с электричеством. Именно на сложных, поэтому асинхронный двигатель является сложным агрегатом.

Источник: onlineelektrik.ru

Асинхронный двигатель

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат. Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы. У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства. Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение. Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.

Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети. Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам. В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Синхронный и асинхронный двигатель

Работа асинхронного двигателя в генераторном режиме

Асинхронный двигатель с короткозамкнутым ротором схема

Генератор из асинхронного двигателя

Принцип работы частотного преобразователя для асинхронного двигателя

Принцип работы частотного преобразователя для асинхронного двигателя

Источник: electric-220.ru