Схема автоматического выключателя

Принцип работы автоматического выключателя: конструкция, устройство, характеристики и варианты подключения (130 фото)

Автомат – один из видов электрических аппаратов защиты. Его главная задача – отключать и включать электрическую цепь. Благодаря этому, он предохраняет кабели, провода и электрические приборы от повреждений, которые могут возникнуть вследствие нештатного тока.

Если сказать кратко, автоматический выключатель выполняет две функции – коммутация и защита цепи. Давайте подробнее рассмотрим эти особенности.

Краткое содержимое статьи:

Разновидности автоматов

Конструктивно, данные устройства можно разделить на несколько видов, а точнее три. Различают воздушный автоматический выключатель, изделие в литом корпусе и модульный. Различные типы автоматических выключателей используются при разных условиях.

Первый вид распространен на промышленных объектах, где сила тока может достигать тысячу и более ампера. Литой корпус используется в различных диапазонах токов, а модульный знаком практически всем и применим в обычной квартире. Именно последние будем рассматривать детальнее.

Конструктивные особенности

Конструкция автоматических выключателей является сложной – здесь объединено несколько элементов. Для корпуса автомата используются диэлектрические материалы. Передняя панель маркируется в зависимости от технических характеристик. Там обязательно указывается брэнд производителя и номер. Первое, на что обращают внимание – номинальный ток и характеристика времени-тока.

Задняя часть оснащено креплением и защелками для специальной реи. Она используется в электрических щитках, и для монтажа достаточно защелкнуть фиксатор.

Разобрав пластиковый корпус, можно рассмотреть устройство изделия. Рукоятка используется для включения и выключения тока в цепи. Также, внутри есть биметаллическая пластина, которая играет роль теплового расцепителя. Когда через неё проходит ток высокого значения, пластинка гнется и защищаемая цепь отключается.

Благодаря соленоиду выполняются функции электромагнитного расцепителя. Конструктивно, он представляет собой катушку с сердечником, обмотанным проволокой.

Когда в защищаемой цепи возникает короткое замыкание, катушка наводит магнитные потоки. Они, в свою очередь, перемещают сердечник, который отключает устройство. В современных моделях, этот процесс происходит за доли секунд.

Принцип работы

Как мы упоминали раньше, во время возникновения перегрузки, по цепи проходит ток, превышающий значение номинального. Благодаря биметаллической пластинке, которая изгибается от температуры, срабатывает устройство расцепления. Таким образом, перегруженная сеть разомкнута.

Время срабатывания зависит от того, какой номинальной ток выключателя, и чем больше, тем быстрее произойдет выключение. После остывания, устройство может работать дальше, однако мы советуем, перед включением найти причину, по которой произошло повышение тока.

Когда возникает короткое замыкание, показатели электрического тока мгновенно растут. Это приводит к тому, что в соленоиде перемещается сердечник, который в свою очередь «включает» расцепитель.

Таким образом, происходит размыкание силовых контактов, и как следствие, защищаемая цепь выключается. Благодаря почти мгновенному действию, удается спасти изоляцию на проводах, электроприборы и сам автомат.

Источник: electrikexpert.ru

Сообщества › Гильдия Электриков › Блог › Модульные автоматические выключатели. Устройство и принцип работы

Модульные автоматические выключатели (далее автоматы) нашли широкое применение в различных электроустановках, от промышленных до бытовых, благодаря своей компактности, простоте конструкции (следовательно надёжности) и невысокой стоимости. Производители выпускают достаточно широкую линейку модульных автоматов с различным числом полюсов (от 1-го до 4-х) на различные номинальные токи, до 125А включительно. Модульными их называют потому, что производятся они в виде одинаковых, по габаритным размерам и принципу устройства, однополюсных модулей, из которых собираются 2-х, 3-х и 4-х полюсные автоматы (т.е. многополюсные автоматы не имеют цельного корпуса, а состоят из соответствующего количества однополюсных модулей). Ширина модуля стандартизирована и равна 17,5 мм. Некоторые модели автоматов имеют ширину корпуса большую, чем ширина стандартного модуля, но, как правило, производители стремятся соблюдать кратность стандартной ширины, что облегчает проектирование внутренней компоновки щитов и шкафов. Кратность при этом может быть дробной с шагом 0,5, например, 1,5, что означает ширину корпуса равную 26,25 мм (на практике 26,5 мм, что несущественно):

Увеличенная ширина корпуса обусловлена, в первую очередь, повышенной отключающей способностью таких автоматов.
Независимо от номинального тока, на который рассчитан автомат, от его отключающей способности, время-токовой характеристики, а так же рода тока (переменный или постоянный), принцип его работы и принцип устройства его узлов одинаков. Все вышеперечисленные параметры определяются конструктивными особенностями отдельных функциональных узлов автомата, которые не оказывают никакого влияния на сам принцип их работы. Фото ниже демонстрирует сказанное:

У представленных автоматов конструктивно отличаются лишь электромагниты (разное число витков и сечение провода), тепловая защита (биметаллическая пластина), устройство гашения дуги (форма дугогасительной камеры, дугогасительная решётка, взаимное расположение проводящих элементов). Остальные элементы конструкции автомата идентичны друг другу, что позволяет существенно упростить (удешевить) их производство за счёт унификации отдельных узлов и деталей.

В модульных автоматах одновременно реализовано два вида защиты: тепловая и электромагнитная.

Тепловая защита (её принято называть тепловым расцепителем) выполнена на биметаллической пластине:

Её свойства таковы, что при нагреве, за счёт разного коэффициента линейного расширения входящих в неё металлов, одна сторона пластины удлиняется больше чем другая. Как следствие, это приводит к её изгибу. Изгиб тем больше, чем выше степень нагрева пластины. Поскольку один конец пластины жёстко зафиксирован, то благодаря тому, что другой конец пластины свободен, при достаточной степени изгиба, она способна воздействовать посредством подвижной скобы на механизм расцепителя:

Нагрев биметаллической пластины обусловлен током, который протекает либо непосредственно через неё, либо, как в случае на фото выше, через опоясывающий её змеевидный проводник. Тем самым подчеркнём, что, несмотря на то, что именно электрический ток вызывает нагрев пластины, степень её нагрева определяется не только величиной тока, но и теплообменом с окружающей средой, и временем, в течение которого протекает этот ток. Очевидно, что часть тепла пластина успевает отдавать в окружающее пространство и скорость теплообмена тем выше, чем больше разница температур окружающей среды и самой пластины. Т.е., при одной и той же величине тока, но при различной температуре окружающей среды, за один и тот же промежуток времени, пластина получит неодинаковую степень нагрева, а следовательно, и степень изгиба. Или, для того чтобы пластина одним и тем же током, но при различной температуре окружающей среды получила одинаковую степень изгиба (например, такую, при которой сможет оказать воздействие на механизм расцепителя), потребуется разное время, однако, при определённых величинах тока и температуры, этого может вовсе не случиться. В качестве аналогии можно представить процесс кипячения воды на морозе, если мощность, скажем кипятильника, недостаточна, вода не закипит никогда, хотя и будет продолжать греться. В связи с этими обстоятельствами, производители оговаривают, что тепловой расцепитель рассчитан на определённый номинальный ток при том условии, что температура окружающей среды равна 30С (иногда эта цифра может быть иной и поэтому всегда будет не лишним посмотреть техническую документации на конкретную модель). Кроме того, из-за разброса различных параметров элементов теплового расцепителя при их производстве, невозможно получить тепловые расцепители с абсолютно одинаковыми характеристиками их работы и, для более точной подстройки, на производстве используют винт юстировки, с помощью которого возможно в некоторой степени сузить разброс, но не свести его к нулю.

Читайте также:  Схема магнитного пускателя

На основании изложенного можно сделать вывод:

работа теплового расцепителя зависит от температуры окружающей среды и может иметь достаточно продолжительное время реакции с момента возникновения тока, превышающего номинальный, до момента срабатывания механизма расцепления, от секунд до десятков минут, в зависимости от величины этого тока.

Электромагнитная защита (её принято называть электромагнитным расцепителем или мгновенным расцепителем) реализована с помощью катушки с подпружиненным сердечником:

Известно, что вокруг катушки с током возникает магнитное поле. Под действием сил этого поля сердечник, преодолевая усилие сжатия пружины, втягивается внутрь катушки. Величина смещения сердечника внутрь катушки зависит от упругости пружины и сил магнитного поля, которые, в свою очередь, зависят от количества витков катушки, наличия или отсутствия магнитопровода, усиливающего магнитное поле, и силы тока, протекающего через катушку. Т.е., при определённой величине сил магнитного поля (когда протекающий через катушку ток достиг расчётного значения срабатывания), сердечник втянется настолько, что сможет оказать воздействие на механизм расцепления и он сработает. Скорость втягивания сердечника также зависит от силы тока, но всегда достаточно высока настолько, что в большинстве случаев недоступна для наблюдения человеческим глазом.
Из сказанного можно сделать следующий вывод:

работа электромагнитного расцепителя не зависит от температуры окружающей среды, зависит только от величины, протекающего через него, тока и имеет незначительное время реакции (доли секунд) с момента возникновения тока отключения до момента срабатывания механизма расцепления, именно поэтому его также называют мгновенным расцепителем.

Механизм расцепителя сконструирован таким образом, что при переводе ручки автомата в положение ВКЛ, подвижные части механизма сцепляют подвижный контакт с неподвижным, замыкая электрическую цепь, и одновременно взводят пружину расцепителя. В таком взведенном состоянии расцепитель находится до тех пор, пока не получит спускового воздействия от любого из следующих источников: сердечник электромагнита (мгновенный расцепитель), биметаллическая пластина (тепловой расцепитель), ручка автомата (при переводе её в положение ВЫКЛ), внешнее, по отношению к корпусу автомата, воздействие. Под внешним воздействием подразумевается, в первую очередь, случай многополюсных автоматов. При сборке многополюсных автоматов, не только фиксируют между собой корпуса однополюсных модулей, но и соединяют общей скобой или штифтом ручки автоматов, а также, через отверстия в корпусе, устанавливают специальные штифты, планки или скобы, для передачи спускового воздействия от любого из сработавших модулей остальным:

Т.е. при срабатывании расцепителя одного из однополюсных модулей, входящих в состав многополюсного автомата, посредством такой скобы, спусковое воздействие передаётся на другие модули многополюсного автомата, что гарантирует его надёжное срабатывание, как единого целого.

Здесь можно сделать ещё один важный вывод:

самостоятельно собрать из однополюсных автоматов надёжно работающий многополюсный, не имея соответствующих комплектующих и понимания тонкостей устройства конкретной модели автомата, невозможно! Заклеивание, заматывание и любые другие способы фиксации ручки автомата в положении ВКЛ ничего не дают – механизм расцепителя, при возникновении аварийной ситуации, сработает в любом случае!

Для тех, кому любопытно, фото деталей механизма расцепителя:

Обобщая сказанное, работу автомата можно представить следующим образом (см. все фото выше). При переводе ручки автомата в положение ВКЛ взводится пружина расцепителя и сцепляются подвижный и неподвижный контакты, образуя замкнутую цепь (если, конечно, автомат подключен к сети, а к автомату подключены потребители). Через автомат, по цепи: винтовой зажим, соединённый с тепловым расцепителем – тепловой расцепитель – гибкий проводник – подвижный контакт – неподвижный контакт – электромагнитный расцепитель – винтовой зажим, соединённый с электромагнитным расцепителем (или в обратном направлении, безразлично), начинает протекать электрический ток. При возникновении любого, из перечисленных выше, спускового воздействия, энергия, запасённая взведённой пружиной расцепителя, высвобождается, возвращая весь механизм в исходное состояние и расцепляет подвижный и неподвижный контакты, разрывая, тем самым, электрическую цепь. Но на этом работа автомата не закончена!

Источник: www.drive2.ru

Автоматические выключатели

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения. В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока. Его схема показана ниже:

Где: 1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока. В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

Где: 1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального, пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки. Принципиальная электрическая схема автомата показана ниже:

Читайте также:  Схематическое изображение розетки

Где: 1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео подробно описывающее работу автоматического выключателя:


Источник: elenergi.ru

Устройство автоматического выключателя серии ВА47-29

Основное назначение автоматических выключателей – использование их в качестве защитных аппаратов от токов коротких замыканий и токов перегрузок. Преимущественным спросом пользуются модульные автоматические выключатели серии ВА. В данной статье рассмотрим устройство автоматического выключателя серии ВА47-29 фирмы iek.

Благодаря компактному исполнению (унифицированные размеры модулей по ширине), удобству монтажа (крепление на DIN-рейке с помощью специальных защелок) и обслуживания, они широко используются в бытовых и промышленных условиях.

Наиболее часто автоматы применяются в сетях со сравнительно небольшими значениями токов рабочего режима и короткого замыкания. Корпус автомата выполнен из диэлектрического материала, что позволяет устанавливать его в общедоступных местах.

Устройство автоматических выключателей и принципы их работы подобны, различия заключаются, и это важно, в материале комплектующих и качестве сборки. Серьезные производители используют только качественные электротехнические материалы (медь, бронзу, серебро), но встречаются и изделия с комплектующими из материалов с «облегченными» характеристиками.

Простейший способ отличить оригинал от подделки – цена и вес: оригинал не может быть дешевым и легким при наличии комплектующих из меди. Вес фирменных автоматов определяется моделью и не может быть легче 100 – 150 г.

Конструктивно модульный автоматический выключатель выполнен в прямоугольном корпусе, состоящем из двух скрепленных между собой половинок. На лицевой стороне автомата указаны его технические характеристики и расположена рукоятка для ручного управления.

Как устроен автоматический выключатель – основные рабочие органы автомата

Если разобрать корпус (для чего необходимо высверлить соединяющие его половинки заклепки), то можно увидеть устройство автоматического выключателя и получить доступ ко всем его компонентам. Рассмотрим наиболее важные из них, которые обеспечивают нормальное функционирование устройства.

  1. 1. Верхняя клемма для подключения;
  2. 2. Неподвижный силовой контакт;
  3. 3. Подвижный силовой контакт;
  4. 4. Дугогасительная камера;
  5. 5. Гибкий проводник;
  6. 6. Электромагнитный расцепитель (катушка с сердечником);
  7. 7. Ручка для управления;
  8. 8. Тепловой расцепитель (биметаллическая пластина);
  9. 9. Винт для регулировки теплового расцепителя;
  10. 10. Нижняя клемма для подключения;
  11. 11. Отверстие для выхода газов (которые образовываются при горении дуги).

Электромагнитный расцепитель

Функциональное назначение электромагнитного расцепителя – обеспечение практически мгновенного срабатывания автоматического выключателя при возникновении в защищаемой цепи короткого замыкания. В этой ситуации в электрических цепях возникают токи, величина которых в тысячи раз превышают номинальное значение этого параметра.

Время срабатывания автомата определяется по его времятоковым характеристикам (зависимость времени срабатывания автомата от величины тока), которые обозначаются индексами А, В или C (наиболее распространенные).

Тип характеристики обозначен в параметре номинального тока на корпусе автомата, например, С16. Для приведенных характеристик время срабатывания находится в пределах от сотых до тысячных долей секунды.

Конструкция электромагнитного расцепителя представляет собой соленоид с подпружиненным сердечником, который связан с подвижным силовым контактом.

Электрически катушка соленоида включена последовательно в цепочку, состоящую из силовых контактов и теплового расцепителя. При включенном автомате и номинальном значении тока, через катушку соленоида протекает ток, однако, величина магнитного потока мала для втягивания сердечника. Силовые контакты замкнуты и это обеспечивает нормальное функционирование защищаемой установки.

При коротком замыкании резкое увеличение тока в соленоиде приводит к пропорциональному увеличению магнитного потока, способного преодолеть действие пружины и переместить сердечник и связанный с ним подвижный контакт. Перемещение сердечника вызывает размыкание силовых контактов и обесточивание защищаемой линии.

Тепловой расцепитель

Тепловой расцепитель выполняет функцию защиты при небольшом, но действующим в течении относительно длительного промежутка времени, превышении допустимого значения тока.

Тепловой расцепитель – расцепитель замедленного действия, он не реагирует на кратковременные броски тока. Время срабатывания этого вида защиты регламентируется также время-токовыми характеристиками.

Инерционность теплового расцепителя позволяет реализовать функцию защиты сети от перегрузки. Конструктивно тепловой расцепитель представляет консольно закрепленную в корпусе биметаллическую пластину, свободный конец которой через рычаг взаимодействует с механизмом расцепления.

Электрически биметаллическая пластина включена последовательно с катушкой электромагнитного расцепителя. При включенном автомате в последовательной цепочке протекает ток, нагревая биметаллическую пластину. Это приводит к перемещению ее свободного конца в непосредственную близость к рычагу механизма расцепления.

При достижении значений тока, указанных во временно-токовых характеристиках и по истечении определенного времени пластина нагреваясь изгибается, контактирует с рычагом. Последний через механизм расцепления размыкает силовые контакты – сеть оказывается защищенной от перегрузки.

Регулировка тока срабатывания теплового расцепителя с помощью винта 9 производится в процессе сборки. Так как большинство автоматов модульные и их механизмы запаяны в корпусе простому электрику нет возможности произвести такую регулировку.

Силовые контакты и дугогасительная камера

Размыкание силовых контактов при протекании через них тока приводит к возникновению электрической дуги. Мощность дуги обычно пропорциональна току в коммутируемой цепи. Чем мощнее дуга, тем сильнее она разрушает силовые контакты, повреждает пластмассовые детали корпуса.

В устройстве автоматического выключателя дугогасительная камера ограничивает действие электрической дуги в локальном объеме. Она располагается в зоне силовых контактов и выполнена из покрытых медью параллельных пластин.

В камере дуга распадается на мелкие части, попадая на пластины, остывает и прекращает свое существование. Выделяющиеся при горении дуги газы выводятся через отверстия в дне камеры и корпусе автомата.

Устройство автоматического выключателя и конструкция дугогасительной камеры обуславливают подключение питания на верхние неподвижные силовые контакты.

Источник: electricvdome.ru

Схемы подключения автомата

Установить и правильно подключить автомат в распределительном шкафу – не проблема. С этим может справиться даже обычный человек, который с электричеством сталкивается только, когда вставляет в розетку штепсельную вилку от бытового прибора или включает освещение. Но вопрос, как правильно подключить автомат, все равно часто звучит от обывателей. Все дело в том, что даже среди электриков происходят споры о способах подсоединения. То есть, подводить питающий провод к автоматическому выключателю сверху или снизу.

Давайте не будем спорить здесь, а просто обратимся к правилам устройства электроустановок (ПУЭ), где в одном из пунктов, а, точнее, в пункте 3.1.6, четко все описано. Ни фото ниже нами сделана выписка из этого пункта ПУЭ.

Читайте также:  Переключение звезда треугольник схема

Итак, правила рекомендуют подключать питающий провод к неподвижному контакту в автомате. А он расположен именно сверху. Но давайте до конца быть честными, и еще раз прочитаем правило. В нем нет строго ограничения, то есть, оно носит только рекомендательный характер. Поэтому отвечая на вопрос, как подключить автоматический выключатель снизу или сверху, можно использовать два варианта. Тем более, прибор будет отключать сеть от перегрузок и короткого замыкания в любом случае в независимости от схемы подключения.

И все же, почему в ПУЭ этот пункт присутствует? Чтобы ответить на этот вопрос, необходимо рассмотреть устройство автоматического выключателя.

Устройство автомата

Чтобы перейти к схемам подключения автомата, необходимо разобраться в первую очередь с его конструкцией. А так как нас интересует именно подключение проводов к нижним или верхним контактам прибора, то надо понимать, что оба контакта (подвижный и неподвижный) изготавливаются из разных металлических сплавов.

Когда дело касается сети переменного тока, то при коммутации автомата его контакты выгорают равномерно, и здесь разницы, куда подключать провода, нет никакой. Если автомат располагается в схеме с постоянным током, то выбор контакта подключения – важная составляющая правильной и долгосрочной работы самого прибора. При высокой величине силы тока наблюдается перенос металлов с одного контакта на другой, поэтому в таких сетях подключение питающих проводов надо производить только сверху, то есть, через неподвижный контакт.

Теперь переходим непосредственно к самому устройству автомата. Чтобы вы поняли, что находится внутри этого прибора, рекомендуем ознакомиться с рисунком ниже.

Два основных элемента, которые выполняют защитные функции автомата – это расцепители электромагнитный и тепловой.

Электромагнитный расцепитель

Этот элемент является защитным, который срабатывает в том случае, если в электрической цепи, куда был установлен сам автомат, появилось короткое замыкание. Именно в этот момент в цепи появляются токи огромной величины (практически превышающие номинальное значение тока в тысячи раз). Чтобы не сгорела проводка и бытовые приборы, включенные в розетки, расцепитель мгновенно отключает подающую сеть. Время отключения – это миллисекунды. Кстати, существует определенная маркировка по времятоковым характеристикам. Обозначается она буквами латинского алфавита и наносится на корпус самого автоматического выключателя. В быту чаще используются типы «А», «В», и «С».

Сама конструкция электромагнитного расцепителя – это сердечник (соленоид), вокруг которого расположены витки пружины. Соленоид связан напрямую с подвижным контактом автомата. А вот пружина соединяется последовательно с силовыми контактами и тепловым расцепителем. Номинальный ток слишком мал, чтобы созданный внутри катушки магнитный поток, смог втянуть сердечник и тем самым разомкнуть контакты. Как только в сети возникает короткое замыкание, то есть, появляется тог огромной величины, внутри катушки (пружины) возникают большие магнитные потоки, пружина сжимается и втягивает в себя сердечник, который в свою очередь тут же размыкает силовые контакты. А, значит, сеть будет обесточена.

Тепловой расцепитель

Этот элемент предназначается для защиты электрической цепи, если в ней начинают действовать большие нагрузки, отличные от номинальной. Это расцепитель, так сказать, замедленного действия. Он будет определенное время держать перегруз, и если последний не снизится до номинального значения, то отключит питание. Сразу оговоримся, что тепловой расцепитель не будет реагировать на скачки тока кратковременного действия.

Чисто конструктивно тепловой расцепитель представляет собой биметаллическую пластину, которая, по сути, является консолью. Ее свободный конец соединен с механизмом, который и будет разъединять контакты. При номинальном токе свободный конец пластины располагается близко к рычагу расцепительного механизма. Как только в цепи начнется перегрузка, пластина начинает нагреваться и изгибаться, тем самым действуя на рычаг, тот в свою очередь на механизм, а последний на контакты, размыкая их.

Вот такое достаточно сложное устройство автоматического выключателя и принцип действия.

Схемы подключения

Итак, принцип работы автоматического выключателя теперь понятен, можно переходить непосредственно к схемам его подключения. Начнем с того, что автоматы могут подключаться в однофазные и трехфазные сети. Какие автоматы для этого необходимы? Если разговор вести от однофазных сетях с напряжением в 220 вольт, то в них обычно устанавливается или однополюсный прибор, или двухполюсный. Сама схема будет зависеть от того, используется ли в ней заземляющий контур или нет.

Если в дом входят два провода (ноль и фаза), то в распределительный шкаф можно ставить однополюсный вариант. При этом фазный контур будет проходить именно через сам автомат. Если внутрь дома входит три провода (фаза, ноль и заземление), то общий автомат должен быть двухполюсным. То есть, к первой клемме прибора подключается фаза, ко второй ноль. Заземление через отдельную клеммную коробку разводится до потребителей (светильники и розетки). Далее, провода от автоматического выключателя проводятся до счетчика, затем к однополюсным автоматам, установленных по группам, но уже как было описано в первом случае. Кстати, вот ниже данная система подключения автомата.

Что касается трехфазной сети, то в данном случае лучше всего ставить трехполюсные или четырехполюсные конструкции. Здесь все точно так же, как и в случае с однофазным подключением. То есть, если в доме используется разводка без заземления, то к неподвижным контактам подключаются три фазы питающей сети. Нулевой провод разводится как отдельный контур до потребителей (розетки и лампы). Если в доме присутствует система заземления, то устанавливается четырехполюсная модель, то есть, к прибору будут подключаться три фазы и ноль, а контур заземления пойдет отдельной линией до потребителей.

Полезные советы

Иногда подключение автоматического выключателя связано с правильным проведением некоторых нюансов всего процесса. А именно подсоединением проводов к прибору. На что необходимо обязательно обратить внимание?

  • У каждой модели есть свои требования относительно сечения вставляемого провода и длины изоляционной оболочки. Это обязательно указывается в паспорте изделия.
  • Чаще всего зачищать провод надо на длину от 0,8 до 1,0 см.
  • Важно понимать, что ставить провод с изоляцией в зажим недопустимо, потому что диаметр изоляции больше диаметра самой жилы, поэтому контакт между зажимом и жилой или будет слабым, или будет полностью отсутствовать.
  • Фиксация провода в автомате производится винтом, который закручивается отверткой. После фиксации необходимо проверить качество зажима, для этого сам провод надо слегка подергать.
  • Если для подключения автомата используется многожильный проводник, то на его конец лучше всего надеть наконечник.

Заключение по теме

Итак, в этой статье мы постарались ответить на вопрос, который интересует многих, как подключить автомат правильно? Надеемся, что из предоставленной информации все понятно. И как уже было сказано выше, этот процесс не самый сложный, главное разобраться в схемах подключения.

Источник: onlineelektrik.ru