Сопротивление обмотки электродвигателя

Подписка на рассылку

Современные электродвигатели являются надежными силовыми агрегатами. Они способны работать десятки лет при своевременном обслуживании и ремонте. Для этого необходимо регулярно осуществлять смазку подшипников, вовремя выполнять их замену, а также контролировать состояние обмоток статора.

Для чего выполняется проверка сопротивления изоляции электродвигателя

Даже в том случае, если оборудование не работало, какое-то время, необходимо обязательно произвести замер сопротивления изоляции, так как она является гигроскопичной и может изменить свои свойства под воздействием влажности воздуха. Снижение сопротивления может быть довольно значительным, поэтому прежде чем включать машину в сеть, должна быть произведена проверка сопротивления изоляции электродвигателя.
Согласно требованиям правил технической эксплуатации электроустановок потребителей (ПТЭЭП) такая процедура производится перед вводом электродвигателя в эксплуатацию, после текущего и капитального ремонта, а также при плановых испытаниях один раз в три года. Замер сопротивления изоляции после текущего и планового ремонта производится для контроля качества его выполнения.

Какие приборы необходимы

Проверяется сопротивление каждой обмотки относительно корпуса, а также сопротивление между обмотками. Для изменения сопротивления изоляции обмоток статора электродвигателя относительно корпуса используется мегаомметр, удобный и компактный прибор, состоящий из омметра и магнитоэлектрического генератора постоянного тока. Для проверки сопротивления между обмотками используется мультиметр в режиме омметра. Сопротивление между обмотками должно быть одинаковым.
Сопротивление изоляции электродвигателя, имеющего номинальное напряжение до 660В, следует измерять при напряжении в 500В. Если производится контроль сопротивления обмоток машины с номинальным напряжением до 3000 В, то применяют мегаомметры с напряжением в 1000В. Измерение сопротивления обмотки электродвигателя с номинальным напряжением более 3000В используются приборы со значением в 2500В. В том случае, если в исследуемом двигателе имеется фазосдвигающий конденсатор, то перед измерением его необходимо отключить от обмотки.

Как правильно производить измерение сопротивления изоляции

Измерения должны производиться при температуре воздуха не ниже +5°C. Перед исследованиями необходимо:

• обесточить электродвигатель;
• снять с него остаточные заряды путем заземления обмоток на 2-3 минуты.

Измерительный провод с зажимом от гнезда «Л» (или «MΩ») подключается к одному из выводов обмоток, а провод от гнезда «З» (или «–») к заземляющему винту в клеммной коробке или к корпусу двигателя.
Для проведения измерения нужно вращать рукоятку генератора со скоростью около 120 оборотов в минуту. Данные измерений записываются после того , как стрелка установилась на месте через 15 и через 60 секунд.
Только при соблюдении этих условий полученный результат можно считать достоверным. После произведенного замера испытываемый двигатель необходимо обязательно разрядить.
При проведении испытаний обязательно должна учитываться температура, при которой производилось измерение сопротивления обмоток электродвигателя. Полученные результаты должны соответствовать нормативам, указанным в ПТЭЭП приложение 3 пункт 23, а также таблице №28 приложения 3.1 (для двигателей с напряжением свыше 1 кВ). При температуре изоляции, равной по значению температуре окружающего воздуха, сопротивление обмотки двигателя должно быть не менее 1 МОм. Сопротивление обмотки электродвигателя машины постоянного тока – не менее 0,5 МОм.

Источник: cable.ru

Как прозвонить электродвигатель мультиметром

Типы электродвигателей

Наиболее распространённые электродвигатели это;

Асинхронный трехфазный двигатель с короткозамкнутым ротором

— асинхронный трехфазный двигатель с короткозамкнутым ротором. Три обмотки двигателя уложены в пазы статора;
— асинхронный однофазный двигатель с короткозамкнутым ротором. В основном его применение находит в бытовой электротехнике в пылесосах, стиральных машинах, вытяжках, вентиляторах, кондиционерах;
— коллекторные двигатели постоянного тока установлены в электрооборудовании автомобиля (вентиляторы, стеклоподъемники, насосы);
— коллекторный двигатель переменного тока находит применение в электрических инструментах. К таким инструментам относятся электродрели, болгарки, перфораторы, мясорубки;
— асинхронный двигатель с фазным ротором имеет довольно мощный пусковой момент. Поэтому такие двигатели устанавливаются в приводах подъемников, кранах, лифтах.

Измерение сопротивления изоляции обмоток

Для проверки двигателя на сопротивление изоляции, электрики используют мегомметр с испытательным напряжением 500 В или 1000 В. Этим прибором измеряют сопротивление изоляции обмоток двигателей рассчитанных на рабочее напряжение 220 В или 380 В.

Для электродвигателей с номинальным напряжением 12В, 24в используют тестер, так как изоляция этих обмоток не рассчитана на испытание под высоким напряжением 500 В мегомметра. Обычно в паспорте на электродвигатель указывается испытательное напряжение при измерении сопротивлений изоляции катушек.

Сопротивление изоляции обычно проверяется мегомметром

Перед измерением сопротивления изоляции нужно ознакомиться со схемой подключения электродвигателя, так как некоторые соединения звездой обмоток бывают подключены средней точкой к корпусу двигателя. Если обмотки имеет одну или несколько точек соединений, “треугольник”, “звезда”, однофазный двигатель с пусковой и рабочей обмоткой, тогда изоляция проверяется между любой точкой соединения обмоток и корпусом.

Если сопротивление изоляции значительно меньше 20 Мом, обмотки разъединяют и проверяют каждую отдельно. Для целого двигателя сопротивление изоляции между катушками и металлическим корпусом должно быть не ниже 20 Мом. Если электродвигатель работал или хранился в сырых условиях, тогда сопротивление изоляции может быть ниже 20 Мом.

Тогда электродвигатель разбирают и просушивают несколько часов накальной лампой 60 Вт, помещенной в корпус статора. При измерении сопротивления изоляции мультиметром, выставляют предел измерений на максимальное сопротивление, на мегомы.

Как прозвонить электродвигатель на обрыв обмоток и межвитковое замыкание

Межвитковое замыкание в обмотках можно проверить мультиметром на омах. Если имеется три обмотки, тогда достаточно сравнить их сопротивление. Отличие в сопротивлении одной обмотки указывает на межвитковое замыкание. Межвитковое замыкание однофазных двигателей определить труднее, так как имеются только разные обмотки — это пусковая и рабочая обмотка, которая имеет меньшее сопротивление.

Сравнивать их нет возможности. Выявить межвитковое замыкание обмоток трехфазных и однофазных двигателей можно измерительными клещами, сравнивая токи обмоток с их паспортными данными. При межвитковом замыкании в обмотках, их номинальный ток возрастает, а величина пускового момента уменьшается, двигатель с трудом запускается или совсем не запускается, а только гудит.

>

Проверка электродвигателя на обрыв и межвитковое замыкание обмоток

Измерять сопротивление обмоток мощных электродвигателей мультиметром не получится, потому что сечение проводов велико и сопротивление обмоток находится в пределах десятых долей ома. Определить разницу сопротивлений, при таких значениях мультиметром, не представляется возможным. В этом случае исправность электродвигателя лучше проверять токоизмерительными клещами.

Если нет возможности подключить электродвигатель к сети, сопротивление обмоток можно найти косвенным методом. Собирают последовательную цепь из аккумулятора на напряжение 12В с реостатом на 20 ом. С помощью мультиметра (амперметра) выставляют реостатом ток 0,5 — 1 А. Собранное приспособление подключают к проверяемой обмотке и замеряют падение напряжения.

Прозвонка электродвигателя на обрыв и сопротивление изоляции

Меньшее падение напряжения на катушке укажет на межвитковое замыкание. Если требуется знать сопротивление обмотки, его рассчитывают по формуле R = U/I. Неисправность электродвигателя можно также определить визуально, на разобранном статоре или по запаху горелой изоляции. Если визуально обнаружено место обрыва, его можно устранить, припаять перемычку, хорошо изолировать и уложить.

Замер сопротивлений обмоток трехфазных двигателей проводят без снятия перемычек на схемах соединений обмоток “звезда” и “треугольник”. Сопротивление катушек коллекторных электродвигаталей постоянного и переменного напряжения также проверяют мультиметром. А при большой их мощности проверка ведется с помощью приспособления аккумулятор — реостат, как указано выше.

Сопротивление обмоток этих двигателей проверяют отдельно на статоре и роторе. На роторе лучше проверять сопротивление непосредственно на щетках, прокручивая ротор. В этом случае можно определить неплотное прилегание щеток к ламелям ротора. Устраняют нагар и неровности на ламелях коллектора, их шлифовкой на токарном станке.

Вручную эту операцию сделать трудно, можно не устранить эту неисправность, а искрение щеток только увеличится. Пазы между ламелями также прочищают. В обмотках электродвигателей может быть установлен плавкий предохранитель, тепловое реле. При наличии теплового реле проверяют его контакты и при необходимости чистят их.

Источник: electricavdome.ru

FAQ по электродвигателям

1. Какие электродвигатели применяются чаще всего?

Наиболее распространены асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию и относительно недороги.

Для работы асинхронного двигателя требуется трехфазное напряжение, создающее на обмотках статора вращающееся магнитное поле. Это поле приводит в движение ротор двигателя, который передает крутящий момент на нагрузку, например, на пропеллер вентилятора или редуктор конвейера. Изменяя конфигурацию обмоток статора, можно менять основные характеристики привода – частоту оборотов и мощность на валу. В случае работы асинхронного электродвигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы.

Также в настоящее время находят применение двигатели постоянного тока. Данные приводы имеют щетки, подверженные износу и искрению. Кроме того, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока используются там, где необходимо быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.

В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.

2. Какие способы управления электродвигателями используются на практике?

Управление электродвигателем подразумевает возможность изменения его скорости и мощности. Так, если на асинхронный двигатель подать напряжение заданной величины и частоты, он будет вращаться с номинальной скоростью и сможет обеспечить мощность на валу не более номинала. Если же нужно понизить или повысить скорость электродвигателя, используют преобразователи частоты. ПЧ может обеспечить нужный режим разгона и торможения, а также позволит оперативно управлять частотой работы.

Для обеспечения требуемого разгона и торможения без изменения рабочей частоты применяют устройство плавного пуска (УПП). Если нужно управлять только разгоном двигателя, используют схему включения «звезда-треугольник».

Для запуска двигателей без ПЧ и УПП широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.

3. Как прозвонить электродвигатель и определить его сопротивление?

Асинхронный электродвигатель, как правило, имеет три обмотки. У каждой обмотки есть по два вывода, которые должны быть обозначены в клеммной коробке двигателя. Если выводы обмоток известны, то можно легко прозвонить каждую из них и сравнить величину сопротивления с остальными обмотками. Если величины сопротивлений отличаются не более, чем на 1%, то скорее всего, обмотки исправны.

Сопротивление обмоток электродвигателя измеряется с помощью омметра, как и сопротивление обмоток трансформатора. Чем больше мощность двигателя, тем меньше сопротивление его обмоток, и наоборот.

4. Как определить мощность электродвигателя?

Проще всего определить номинальную мощность электродвигателя по шильдику. На нем указана механическая мощность (мощность на валу), значение которой всегда меньше потребляемой мощности за счет потерь на трение и нагрев. Однако, если шильдик на корпусе двигателя отсутствует, можно очень приблизительно оценить характеристики привода по его габаритам. При одинаковой мощности двигатель с бо́льшим диаметром вала будет иметь более высокую мощность на валу и меньшую частоту оборотов.

Также мощность можно определить по нагрузке и по настройкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).

Еще один способ – включаем двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого измеряем токоизмерительными клещами ток, который должен быть одинаков по всем обмоткам. Для приблизительной оценки мощности асинхронного двигателя, подключенного по схеме «звезда», нужно разделить номинальный измеренный ток на 2.

5. Как увеличить или уменьшить обороты электродвигателя?

Управление скоростью вращения двигателя необходимо в трех режимах работы – при разгоне, торможении, и в рабочем режиме.

Наиболее универсальный способ управления оборотами — использование частотного преобразователя. Настройками ПЧ можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато.

Управление оборотами двигателя в режиме разгона и торможения возможно при использовании УПП. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

>

6. Как рассчитать ток и мощность электродвигателя?

Бывает так, что известен ток асинхронного двигателя (по измерениям в номинальном режиме или по шильдику), но неизвестна его мощность. Как в таком случае рассчитать мощность? Обычно используют следующую формулу:

где:
Р – номинальная полезная мощность на валу двигателя в Вт (указывается на шильдике),
I – ток двигателя, А,
U – напряжение питания обмоток (380 В при подключении в «звезду», 220 В при подключении в «треугольник»),
cosφ, η – коэффициенты мощности и полезного действия для учета потерь (обычно 0,7…0,8).

Для расчета тока по известной мощности пользуются обратной формулой:

Для двигателей мощностью 1,5 кВт и более, обмотки которых подключены в «звезду» (это подключение используется чаще всего), существует простое эмпирическое правило – чтобы приблизительно оценить ток двигателя, нужно умножить его мощность на 2.

7. Как увеличить мощность электродвигателя?

Номинальная мощность на валу, которая указывается на шильдике двигателя, обычно ограничивается допустимым током, а значит – нагревом корпуса привода. Поэтому при увеличении мощности необходимо предпринять дополнительные меры по охлаждению электродвигателя, установив отдельный вентилятор.

При использовании преобразователя частоты для повышения мощности можно изменить несущую частоту ШИМ, однако следует избегать перегрева ПЧ. Мощность также можно увеличить с помощью редуктора или ременной передачи, пожертвовав количеством оборотов, если это допустимо.

Если приведенные советы неприменимы – придётся менять двигатель на более мощный.

8. Каковы потери мощности при подключении трехфазного двигателя к однофазной сети (380 на 220)?

При таком подключении используются пусковой и рабочий фазосдвигающие конденсаторы. Номинальную мощность на валу в данном случае получить не удастся, и потери мощности составят 20-30% от номинала. Это происходит из-за невозможности обеспечить отсутствие перекоса по фазам при изменении нагрузки.

9. Какие исполнения двигателей бывают?

В зависимости от исполнения электродвигатели классифицируются по способу монтажа, классу защиты, климатическому исполнению. Существует два основных способа монтажа асинхронных электродвигателей – на лапах и через фланец. Оба варианта исполнения в различных комбинациях показаны в таблице ниже.

Виды климатического исполнения предполагают использование двигателя в определенных климатических зонах: умеренный климат (У), холодный климат (ХЛ), умеренно-холодный климат (УХЛ), тропический климат (Т), общеклиматическое исполнение (О), общеклиматическое морское исполнение (ОМ), всеклиматическое исполнение (В). Также различают категории размещения (на открытом воздухе, под навесом или в помещении и т.д.).

Класс защиты обозначает характер защиты двигателя от попадания пыли и влаги. Наиболее часто встречаются приводы с классами IP55 и IP55.

10. Зачем электродвигателю тормоз?

В некоторых устройствах (лифтах, электроталях, лебедках) при остановке двигателя необходимо зафиксировать его вал в неподвижном состоянии. Для этого применяют электромагнитный механический тормоз, который входит в конструкцию двигателя и располагается в его задней части. Управление тормозом осуществляется с помощью частотного преобразователя или схемы на контакторах.

11. Как двигатель обозначается на электрических схемах?

Электродвигатель обозначается на схемах с помощью буквы «М», вписанной в круг. Также на схемах могут быть указаны порядковый номер двигателя, количество фаз (1 или 3), род тока (переменный или постоянный), способ включения обмоток ( «звезда» или «треугольник»), мощность. Примеры обозначений показаны ниже.

12. Почему греется электродвигатель?

Двигатель может нагреваться по одной из следующих причин:

  • износ подшипников и повышенное механическое трение
  • увеличение нагрузки на валу
  • перекос напряжения питания
  • пропадание фазы
  • замыкание в обмотке
  • проблема с обдувом (охлаждением)

Нагрев двигателя резко снижает его ресурс и КПД, а также может приводить к поломке привода.

13. Типичные неисправности электродвигателей

Выделяют два вида неисправностей электродвигателей: электрические и механические.

К электрическим относятся неисправности, связанные с обмоткой:

  • межвитковое замыкание
  • замыкание обмотки на корпус
  • обрыв обмотки

Для устранения этих неисправностей требуется перемотка двигателя.

  • износ и трение в подшипниках
  • проворачивание ротора на валу
  • повреждение корпуса двигателя
  • проворачивание или повреждение крыльчатки обдува

Замена подшипников должна производиться регулярно с учетом их износа и срока службы. Крыльчатка также меняется в случае повреждения. Остальные неисправности устранению практически не подлежат, и единственный выход — замена двигателя.

Если у вас есть вопросы, ответы на которые вы не нашли в данной статье, напишите нам. Будем рады помочь!

Источник: tehprivod.su

1.8.15. Электродвигатели переменного тока

Главная // Наша библиотека // Нормы, правила, стандарты // Правила устройства электроустановок (ПУЭ) // ПУЭ. Глава 1.8. Седьмое издание // 1.8.15. Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока

Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп. 2, 4б, 5, 6.
Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп. 1-6.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ.

Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл. 1.8.9.

Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателей

Мощность, номинальное напряжение электродвигателя, вид изоляции обмоток Критерии оценки состояния изоляции обмотки статора
Значение сопротивления изоляции, МОм Значение коэффициента абсорбции R60/R15
1. Мощность более 5 МВт, термореактивная и микалентная компаундированная изоляция При температуре 10-30 °С сопротивление изоляции не ниже 10 Мом на 1 кВ номинального линейного напряжения Не менее 1,3 при температуре 10-30 °С
2. Мощность 5 МВт и ниже, напряжение выше 1 кВ, термореактивная изоляция
3. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью от 1 до 5 МВт включительно, а также двигатели меньшей мощности наружной установки с такой же изоляцией напряжением выше 1 кВ Не ниже значений, указанных в табл.1.8.10. Не менее 1,2
4. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью более 1 МВт, кроме указанных в п.3 Не ниже значений, указанных в табл.1.8.10.
5. Напряжение ниже 1 кВ, все виды изоляции Не ниже 1,0 Мом при температуре 10-30 °С
6. Обмотка ротора 0,2
7. Термоиндикаторы с соединительными проводами, подшипники В соответствии с указаниями заводов-изготовителей

2. Измерение сопротивления изоляции.

Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл.1.8.10.

Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл.1.8.9, пп.3, 4)

Температура обмотки, °С Сопротивление изоляции R60 &#8243 , МОм, при номинальном напряжении обмотки, кВ
3-3,15 6-6,3 10-10,5
10 30 60 100
20 20 40 70
30 15 30 50
40 10 20 35
50 7 15 25
60 5 10 17
75 3 6 10

У синхронных электродвигателей и элекродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм.

3. Испытание повышенным напряжением промышленной частоты.

Производится на полностью собранном электродвигателе.
Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.
Значения испытательных напряжений приведены в табл.1.8.11. Продолжительность приложения испытательного напряжения 1 мин.

Испытательные напряжения промышленной частоты для обмоток электродвигателей переменного тока

Испытуемый элемент Мощность электродвигателя, кВт Номинальное напряжение электродвигателя, кВ Испытательное напряжение, кВ
1. Обмотка статора Менее 1,0
От 1,0 и до 1000

От 1000 и более
От 1000 и более
От 1000 и более

Ниже 0,1
Ниже 0,1
Выше 0,1
До 3,3 включительно
Свыше 3,3 до 6,6 включительно
Свыше 6,6
0,8 (2Uном. + 0,5)
0,8 (2Uном. + 1)
0,8 (2Uном. + 1), но не менее 1,2
0,8 (2Uном. + 1)

0,8 (2Uном. + 3)

2. Обмотка ротора синхронных электродвигателей, предназначенных для непосредственного пуска, с обмоткой возбуждения, замкнутой на резистор или источник питания. 8-кратное Uном. системы возбуждения, но не менее 1,2 и не более 2,8
3. Обмотка ротора электродвигателя с фазным ротором. 1,5 Up*, но не менее 1,0
4. Резистор цепи гашения поля синхронных двигателей. 2,0
5. Реостаты и пускорегулирующие резисторы. 1,5 Up*, но не менее 1,0

_____________
* напряжение на кольцах при разомкнутом неподвижном роторе и номинальном напряжении на статоре.

4. Измерение сопротивления постоянному току.

Измерение производится при практически холодном состоянии машины.

а) Обмотки статора и ротора*

______________
* Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором.

Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2%.

б) Реостаты и пускорегулировочные резисторы
Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек.
Значения сопротивления не должны отличаться от исходных значений более чем на 10%.

5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.

Продолжительность проверки не менее 1 часа.

6. Проверка работы электродвигателя под нагрузкой.

Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя.

Источник: www.sonel.ru

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЯ.

Если электродвигатель не будет пущен в эксплуатацию сразу же после поставки, необходимо организовать его защиту от воздействия внешних факторов, таких как влажность, температура и загрязнения, чтобы не допустить повреждения изоляции. Прежде чем включить электродвигатель после длительного хранения, следует измерить сопротивление изоляции.

Если электродвигатель хранится в условиях высокой влажности, должны проводиться регулярные измерения. Практически невозможно сформулировать какие-либо стандарты для минимального фактического сопротивления изоляции электродвигателя, так как сопротивление зависит от конструктивных особенностей электродвигателя, используемого изоляционного материала и номинального напряжения. Исходя из опыта эксплуатации, минимальное сопротивление изоляции можно принять равным 10 МОм .


Измерение сопротивления изоляции выполняется с помощью мегаомметра – омметра с диапазоном высокого сопротивления. Измерение сопротивления производится: между обмотками и «землёй» электродвигателя на которые подаётся постоянное напряжение в 500 или 1000 В. В ходе измерения и сразу же после него на клеммах может присутствовать опасное напряжение, к ним НЕЛЬЗЯ ПРИКАСАТЬСЯ .

Сопротивление изоляции:

Минимальное сопротивление изоляции новых обмоток или обмоток после чистки или ремонта относительно «земли» составляет 10 МОм или более.

Минимальное сопротивление изоляции, R, вычисляется умножением номинального напряжения, U n , на постоянный множитель 0,5 МОм / кВ. Например: если номинальное напряжение составляет 690 В = 0,69 кВ, минимальное сопротивление изоляции: 0,69 кВ ½ 0,5 мегом / кВ = 0,35 мегом

Измерение сопротивления изоляции электродвигателя:

Минимальное сопротивление изоляции обмоток относительно земли измеряется с 500 В постоянного тока. Температура обмоток должна быть 25°C +/– 15°C.

Максимальное сопротивление изоляции должно измеряться с 500 В постоянного тока при рабочей температуре обмоток 80 -120°C в зависимости от типа электродвигателя и КПД.

Проверка сопротивления изоляции обмоток электродвигателя:

Если сопротивление изоляции нового электродвигателя, электродвигателя после чистки или ремонта, который не которое время не эксплуатировался, составляет меньше 10 МОм, это можно объяснить тем, что в обмотки попала влага и их необходимо просушить.

Если электродвигатель эксплуатируется в течение долгого промежутка времени, минимальное сопротивление изоляции может упасть до критического уровня. Двигатель сохраняет работоспособность, если сопротивление его изоляции упало до минимального расчетного значения. Однако, если зарегистрировано такое падение сопротивления, электродвигатель необходимо остановить, чтобы исключить вероятность поражения обслуживающего персонала блуждающими токами.

Источник: energo.ucoz.ua

Добавить комментарий