Классификация систем заземления электроустановок
Классификация систем заземления электроустановок и модернизация квартирной электропроводки. Опыт применения.
Для правильного ремонта или модернизации проводки нужно точно знать, какая система заземления применена на объекте. От этого зависит ваша безопасность, кроме того, это важно при составлении проекта реконструкции. В одних случаях, например, применяется трехжильный кабель, а в других четырех и пятижильный.
Классификация систем заземления электроустановок по МЭК
Международная электротехническая комиссия и с ее подачи 7 редакция ПУЭ (правила устройства электроустановок) различают 3 системы заземления и несколько их подсистем.
1. Система TN (подсистемы TN-C, TN-S, TN-C-S);
Система TN
Система TN, это система с глухозаземленной нейтралью, при которой открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника с помощью нулевых защитных проводников.
Термин глухозаземленная нейтраль значит, что на трансформаторной подстанции нейтраль (ноль) подключен непосредственно к заземляющему контуру (заземлен).
Подсистема TN-C, это TN, в которой нулевой защитный и нулевой рабочий проводники совмещены на всем ее протяжении, т.е. защитное зануление.
TN-S – это система, в которой на всем протяжении разделены нулевой защитный и нулевой рабочий проводники. Это самая безопасная, но и самая дорогая система.
Подсистема TN-C-S – это промежуточный вариант. В ней нулевой защитный и нулевой рабочий проводники совмещены в какой-то ее части. Обычно это главный щит здания (защитное заземление дополняется защитным занулением). Далее по всему зданию эти проводники разделены. Эта система оптимальна с точки зрения соотношения цена – качество.
Система IT
Это система, в которой ноль источника изолирован от земли, или заземлен через приборы, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены при помощи заземляющих устройств. Сейчас система IT практически никогда не используется.
Система TT
Это система, в которой ноль источника заземлен, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от заземленного нуля источника. Иными словами, используется свой контур заземления на объекте никак не связанный с нулем.
Сегодня эта система является основной для мобильных сооружений, например бытовки, дома-вагоны и т.д. Отметим, что согласовать применение такой системы сложнее, чем TN. Становится обязательным применение УЗО, необходимо качественное заземление ( 4 Ом для 380 В ), есть особенности при подборе защитных автоматов.
Иллюстрация для сравнения отличий схем электроснабжения при различных системах заземления:
Схема самой безопасной системы заземления TN-S:
Какую систему зазаемления электроустановок применять и как модернизировать?!
Исходя из вышесказанного, лучше всего применять систему заземления TN.
Система TN-C применялась ранее и ее нельзя рекомендовать для нового жилья.
Всем хороша система TN-S, но дорога и пока применяется редко. Оптимальный вариант пока – это система TN-C-S.
Остановимся теперь на типичных трудностях и ошибках, встречающихся при модернизации систем заземления.
1. Если рассматривать частный дом, в котором проводка уже сделана трехжильным проводом ( фаза, ноль, заземление), то замена TN-C на TN-C-S довольно проста. Нужно только сделать качественное заземление, подключить его к вводному электрощитку и к точке соединения нуля и земли ( N и РЕ) подключить РЕ провода розеток и светильников (обычно это желто-зеленый провод).
2. В квартире или многоквартирном доме, не оборудованном контуром заземления так делать нельзя. Проводку, конечно, лучше сделать тоже трехпроводным кабелем, но провод заземления не нужно подключать, ни в розетках (светильниках) не в электрощитке.
Причина заключается в том, что если вы подключите этот провод к нулю проводки (больше подключить его некуда, кроме разве батареи, что запрещено), то за счет падения папряжения в нулевом проводе от токов включенных нагрузок, корпуса вашей аппаратуры будут под напряжением относительно земли (батареи, трубы и т.д.).
3. В процессе эксплуатации встречаются и другие казусы, например, после устранения аварии электрики перепутывают нулевой и фазный провод. Соседям, у которых нет нулевого провода на корпусе аппаратуры, ничего не грозит, а у вас корпус под потенциалом фазы!
4. Нередки случаи отгорания нуля входного кабеля, происходящие при перекосе фаз, в этом случае на корпусе тоже будет опасный потенциал.
Исходя из вышесказанного, вытекает необходимость использования УЗО или дифавтоматов. Это устройства, выключающие сеть 220/380 В при протекании по телу человека незначительных ( но чувствительных !) токов 10-30 мА. Недостаток этих устройств в том, что они будут срабатывать при любых токах утечки, например, когда вас пролили соседи. Бывает весьма сложно найти, где происходят эти утечки.
Итак, при ремонте проводки применяйте систему заземления TN-C-S. Прокладывайте проводку трехжильным медным кабелем с цветной изоляцией жил (например ВВГ НГ).
Если в доме нет контура заземления, не подключайте провод заземления к нулю. Для проводки в помещения, где много влаги, используйте дифавтоматы и УЗО.
Источник: electrik.info
Заземление электроустановок
Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.
Заземляющее устройство
Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:
- Каркасы зданий (железобетонные или металлические), которые соединены с землей.
- Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
- Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
- Опоры высоковольтных линий электропередач
- Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)
Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.
Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.
Классификация систем заземления
Различают следующие системы заземления:
- Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
- Система TT
- Система IT
>
Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.
Система ТN
Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.
Система TT
Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.
Система IT
Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.
Требования к заземлению электродвигателя
Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом с контуром заземления здания, выполненного из полосы металла при помощи сварки.
Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:
Сечение фазных проводников, мм 2 | Наименьшее сечение защитных проводников, мм 2 |
S≤16 | S |
16 35 | S/2 |
Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.
Требования к заземлению сварочных аппаратов
Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.
Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.
Рекомендуем прочитать:
One thought on “ Заземление электроустановок ”
Заземление представляет собой токоотводящий комплекс приспособлений.
Источник: electry.ru
Системы заземления TN TN-С TN-S
Рассмотрим какие существуют системы заземления. И схемы
Рис. 1.Система заземления TN-C переменного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:
1 – заземлитель нейтрали (средней точки) источника питания; 2 – открытые проводящие части
В системах заземления для электроустановок напряжением до 1 кВ приняты следующие обозначения:
- система заземления – TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
- система заземления TN-С – система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1);
- система заземления TN-S – система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2);
- система заземления TN-C-S – система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 3);
- система заземления IT – система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 4);
- система заземления ТТ – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 5).
>
Рис. 2. Система заземления TN-S переменного тока. Нулевой защитный и нулевой рабочий проводники разделены:
1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части
Первая буква – состояние нейтрали источника питания относительно земли:
- Т – заземленная нейтраль;
- I – изолированная нейтраль.
Вторая буква – состояние открытых проводящих частей относительно земли:
- Т – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
- N – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
Последующие (после N) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
- S – нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
- С – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);
Условные обозначения на схемах:
N – – нулевой рабочий (нейтральный) проводник;
РЕ – – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);
PEN – – совмещенный нулевой защитный и нулевой рабочий проводники.
Рис. 3. Система TN-C-S переменного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:
1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части
Рис. 4.Система IT переменного тока. Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление:
1 – сопротивление заземления нейтрали источника питания (если имеется); 2 – заземлитель; 3 – открытые проводящие части; 4 – заземляющее устройство электроустановки;
Рис. 5 Система ТТ переменного тока. Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:
1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части; 3 – заземлитель открытых проводящих частей электроустановки;
Система заземления TN-C Имеет огромный недостаток об этом мы уже писали раньше: Заземление и зануление в этажных и во вводных щитах . Здесь используется один нулевой проводник и как рабочий, и для защиты. В нормальных условиях проблем не возникает, а вот в аварийных ситуациях, когда отгарает ноль (Ведь он находится под нагрузкой). Вместо защиты можно оказаться под напряжением.
Для систем заземления IT и ТТ для электроустановок требуется отдельное заземление что не всегда удобно, например, в этажных щитах.
Поэтому наиболее предпочтительна система заземления TN-S.
Так же следует заметить что иногда в одной электрической сети (схеме) эти системы заземления комбинируют.
Здесь рассмотрены схемы систем заземления переменного тока. Если интересны системы заземления постоянного тока пишите в комментариях.
Источник: www.elektroceh.ru
Какие виды систем заземления существуют и что такое защитное заземление?
Защитное заземление — это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.
Что такое заземление и зачем оно нужно?
Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.
Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.
Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.
Что такое нейтраль?
Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.
Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.
Что такое PE и PEN проводники?
PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.
PE-проводник — это защитное заземление, которое мы используем, например, в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.
Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.
PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.
Виды систем искусственного заземления
В классификации систем заземления есть естественные и искусственные типы заземления.
Системы заземления искусственного типа:
Виды заземления — расшифровка названия:
- T — заземление;
- N — подсоединение проводника к нейтрали;
- I -изолирование;
- C — объединение опций функционального и нулевого провода защитного типа;
- S — раздельное использование проводов.
Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.
Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.
Системы с глухозаземленной нейтралью системы заземления TN
К таким системам относятся:
Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.
TN включает в себя такие элементы, как:
- заземлитель средней точки, которая относится к источнику питания;
- внешние проводящие части устройства;
- проводник нейтрального типа;
- совмещенные проводники.
>
Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.
Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.
Система TN-C
В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.
Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.
- возрастает вероятность получения удара током;
- возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
- высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
- такая система защищает только от короткого замыкания.
Система TN-S
Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.
Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.
- PN — нейтральный механизм, который задействован в схеме электрического оборудования.
- PE — глухозаземленный проводник, выполняющий защитную функцию.
- легкость монтажа;
- низкая стоимость покупки и содержания системы;
- высокая степень электробезопасности;
- не требуется создание контура;
- возможность использовать систему в качестве устройства от защиты утечки тока.
Система TN-C-S
TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.
- простое устройство защитного механизма от попадания молний;
- наличие защиты от короткого замыкания.
- слабый уровень защиты от сгорания нулевого проводника;
- возможность появления фазного напряжения;
- высокая стоимость монтажа и содержания;
- напряжение не может быть отключено автоматикой;
- отсутствует защита от тока на открытом воздухе.
Система TT
TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.
TT монтируется по схеме четырех проводников:
- 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
- 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.
- высокий уровень устойчивости к деформации провода, ведущего к потребителю;
- защита от КЗ;
- возможность использования на электроустановках высокого напряжения.
- сложное устройство защиты от молний;
- невозможность отследить фазы короткого замыкания электрической цепи.
Системы с изолированной нейтралью
В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.
Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.
Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.
Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.
Источник: odinelectric.ru
Системы заземления TN, TNC, TNS, TNCS, TT, IT — основные отличия
Вступление
Заземление является основный мерой такой защиты. Именно по этому, нужно четко понимать и представлять, чем различаются системы заземления TN, TNC, TNS, TNCS, TT, IT придуманные, человечеством, в разных точках мира в зависимости от развития своих электросетей.
Что такое заземление
Фактически, заземление это намеренное (!) соединение частей электроустановки, которые могут проводить ток, с естественным или искусственным заземлителем.
В свою очередь, заземлитель это проводник, имеющий необходимый, поверхностный или глубинный, контакт с землей.
Формально, любой железный прут, вбитый в землю является заземлителем. Фактически, чтобы стать заземлителем, вбитый прут должен иметь нормативное электрическое сопротивление. По норме ПУЭ 7 разд. 1.7.101 это не более 2,4,8 Ом при 660, 380 и 220В (три фазы) и 380, 220 и 127В (одна фаза).
Также по нормативам, в качестве заземлителя могут выступать железные части строения и сооружений электрически связанные с землей. Но опятьтаки, при выполнении определенных условий. А именно: сопротивление должно быть в нормативе, напряжение прикосновение должно быть в нормативе и естественный заземлитель должен быть достаточно надежен, чтобы не разорваться в аварийной ситуации, например, при коротком замыкании.
Что такое нейтраль
В электротехнике нейтралью называют контакт, к которому подсоединены обмотки вырабатывающих генераторов или понижающих (повышающих) трансформаторов, используемых для питания сети.
- Нейтраль обмоток трансформатора соединенную, с заземляющим устройством установки, называется глухозаземленной.
- Нейтраль не соединенную, с заземлением, называют изолированной.
- Есть нейтрали соединенные с землёй через сопротивления.
Что обозначают на схемах L1, L2, L3 и N
- Буквой N на схемах и в документации обозначают провод (проводник) электропитания соединенный с глухозаземленной нейтралью.
- Буквами L1, L2, L3 или A, B, C обозначают фазные проводники используемые для электропитания.
Что такое PE и PEN проводники
- PE — обозначение нейтрального (не фазного) проводника, используемого для электробезопасности сетей.
- PEN — это обозначение проводника, который одновременно является и рабочим нулём (N) и защитным проводником (PE).
Буквы используемые в аббревиатурах.
- Буква «T», обозначает землю (terre);
- «N» это нейтраль (neuter);
- Буква «I» это изолированно (isole).
системы заземления: TN система
Система, при которой, нейтральный провод трансформатора глухо заземлен. Защита обеспечивается соединением неизолированных частей электрической установки, способных проводить ток, с глухо заземленной нейтралью трансформатора. Проводник в таком соединении называют, нулевой защитный проводник (PE).
Почти система TN. Однако, нулевой защитный (PE) и нулевой рабочий (N) проводники объединены в одном проводнике (PEN) на всей линии от трансформатора до электроустановки.
Почти система TN. Однако, в отличие от TNC, проводники N и PE не объединены, а разделены на всей линии от трансформатора до электроустановки.
TNCS подразумевает, что проводники PE и N объединены только, на участке линии.
системы заземления tn-c-s
TT (ти-ти)
TT подразумевает, что нейтраль трансформатора глухо заземлена, но открытые токопроводящие части установки заземлены через заземляющее устройства. Эти устройства элекетрически не связаны с нейтралью трансформатора.
IT (ай-ти)
IT, подразумевает, что нейтраль трансформатора либо изолирована от земли, либо заземлена через приборы (устройства), с большим сопротивлением. При этом открытые токопроводящие части установки заземлены локальным заземляющим устройством и не связаны с трансформатором.
системы заземления IT
Источник: ehto.ru