Короткозамкнутый и фазный ротор. В чем различие?

Здравствуйте, дорогие читатели. В этой статье мы вам расскажем, про короткозамкнутый и фазный ротор, про их устройство и принцип действия.

Асинхронные электродвигатели имеют трехфазную обмотку статора, которая может формировать разное количество пар магнитных полюсов в зависимости от своей конструкции, что влияет в свою очередь на номинальные обороты двигателя при номинальной частоте питающего трехфазного напряжения. При этом роторы двигателей данного типа могут отличаться, и у асинхронных двигателей они бывают короткозамкнутыми или фазными.

Короткозамкнутый и фазный ротор у асинхронного двигателя

Короткозамкнутый ротор

Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.

Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.

Короткозамкнутый ротор и беличья клечатка

Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение. Поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.

Короткозамкнутый ротор асинхронного электродвигателя

К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.

Механическая характеристика асинхронного двигателя, скольжение s

Для асинхронных двигателей всегда характерно скольжение s, возникающее из-за того, что синхронная частота вращающегося магнитного поля n1 статора выше реальной частоты вращения ротора n2.

Скольжение возникает потому, что индуцируемая в стержнях ЭДС может иметь место только при движении стержней относительно магнитного поля. То есть ротор всегда вынужден хоть немного, но отставать по скорости от магнитного поля статора. Величина скольжения равна s = (n1-n2)/n1.

Если бы ротор вращался с синхронной частотой магнитного поля статора, то в стержнях ротора не индуцировался бы ток, и ротор бы просто не стал вращаться. Поэтому ротор в асинхронном двигателе никогда не достигает синхронной частоты вращения магнитного поля статора, и всегда хоть чуть-чуть но отстает по частоте вращения от частоты синхронной.

Скольжение s измеряется в процентах, и на холостом ходу практически приближается к 0, когда момент противодействия со стороны ротора почти отсутствует. При коротком замыкании (ротор застопорен) скольжение равно 1.

Вообще скольжение у асинхронных двигателей с короткозамкнутым ротором зависит от нагрузки и измеряется в процентах. Номинальное скольжение — это скольжение при номинальной механической нагрузке на валу в условиях, когда напряжение питания соответствует номиналу двигателя.

Фазный ротор

Фазный ротор

Асинхронные двигатели с фазным ротором, в отличие от асинхронных двигателей с короткозамкнутым ротором, имеют на роторе полноценную трехфазную обмотку. Подобно тому, как на статоре уложена трехфазная обмотка, так же и в пазах фазного ротора уложена трехфазная обмотка.

Выводы обмотки фазного ротора присоединены к контактным кольцам, насаженным на вал, и изолированным друг от друга и от вала. Обмотка фазного ротора состоит из трех частей — каждая на свою фазу — которые чаще всего соединены по схеме «звезда».

К обмотке ротора через контактные кольца и щетки присоединяется регулировочный реостат. Краны и лифты, например, пускаются под нагрузкой, и здесь необходимо развивать существенный рабочий момент. Невзирая на усложненность конструкции, асинхронные двигатели с фазным ротором обладают лучшими регулировочными возможностями касательно рабочего момента на валу, чем асинхронные двигатели с короткозамкнутым ротором, которым требуется промышленный частотный преобразователь.

Фазный ротор асинхронного электродвигателя

Обмотка статора асинхронного двигателя с фазным ротором выполняется аналогично тому, как и на статорах асинхронных двигателей с короткозамкнутым ротором. И аналогичным путем создает, в зависимости от количества катушек (три, шесть, девять или более катушек), два, четыре и т. д. полюсов. Катушки статора сдвинуты между собой на 120, 60, 40 и т. д. градусов. При этом на фазном роторе делается столько же полюсов, сколько и на статоре.

Регулируя ток в обмотках ротора, регулируют рабочий момент двигателя и величину скольжения. Когда регулировочный реостат полностью выведен, то для уменьшения износа щеток и колец их закорачивают при помощи специального приспособления для подъема щеток.

Видео, короткозамкнутый и фазный ротор


Источник: powercoup.by

Ротор электродвигателя – что это?

В каждом аппарате, работающем от электрической энергии, используется такое устройство как электродвигатель, который состоит из статора – неподвижной части и ротора – подвижной. Далеко не каждому известно что такое ротор электродвигателя и какие его функции, поэтому, возникают ложные представления.

Состоит ротор из цилиндра, составленного из листов штампованной электротехнической стали, которые одеты на вал. По своей природе роторы бывают фазными и короткозамкнутыми. Фазные роторы имеют обмотку трёхфазного типа со схемой соединения «звезда» и вращающимися вместе с валом контактными кольцами. К данным кольцам с помощью определённых щёток возможно подключить:

  • дроссели для удержания токов ротора и стабилизации работы электродвигателя в моменты возможных перегрузок и падения оборотов;
  • источник постоянного тока;
  • пускорегулирующий реостат, для увеличения пускового момента с помощью снижения пускового тока;
  • инверторное питание, для управления моментных характеристик и оборотов двигателя.

Таким образом, фазные роторы снабжают асинхронные электродвигатели рабочей стабильностью, позволяя использовать их в различных установках по типу мостовых кранов и других устройств, где не требуются широкая и плавна регулировка скорости электродвигателей большой мощности.

Короткозамкнутый ротор, имеющий обмотку с названием «беличье колесо» состоит из вставленных в сердечник стержней алюминиевого или медного происхождения и коротко замыкающих колец с торцевым лопастями. Для улучшения его пусковые характеристики на роторе выполняют паз специальной формы, создающий из-за своей неординарной относительно оси вращения структуры эффект вытеснения тока, вызывающего большие показатели сопротивлений, например, при пуске. Применяют такие роторы в двигателях асинхронного типа в приводах, которые не используют большие пусковые моменты, например, это могут быть водные насосы небольших мощностей без возможности регулировки рабочей скорости.

Среди всех преимуществ двигателей с короткозамкнутым ротором можно выделить:

  • практически одинаковая скорость с применением разных нагрузок;
  • допустимость больших рабочих перегрузок;
  • простота и удобство автоматизации пуска;
  • высокие показатели КПД;
  • конструктивная простота.

>

Как видим, хотя внешне и функционально роторы и имеют различия, влияющие существенно на область их применения, используются они в равных долях во всех сферах деятельности человека. Так, электродвигатели от Siemens изготавливаются с роторами и того и другого типа, что способствовало крупному внедрению этих агрегатов во многие производственные процессы.

Так же, кроме вышеперечисленных типов ротора стоит отметить и существование массивного ротора, состоящего из материала ферромагнитного происхождения, играющего роль магнитопровода и проводника одновременно. Быть может он не нашёл столь широкого применения как фазный ли короткозамкнутый, но имеет ряд преимуществ:

  • низкая себестоимость;
  • простота изготовления;
  • высокий пусковой момент;
  • высоких показатель механической прочности, что немаловажно в машинах работающих на высоких скоростях.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Источник: epusk.ru

Устройство статора и ротора электродвигателя

Статор асинхронного двигателя (рис. 10) – это сердечник, в пазы которого уложена трёхфазная обмотка 4, питаемая трёхфазным переменного током.

Статор представляет собой толстостенный полый цилиндр, выполненный в виде набора кольцеобразных пластин 3, отштампованных из листов магнитомягкой электротехнической стали. Он не имеет явно выраженных полюсов, т. к. внутренняя поверхность его сделана совершенно гладкой.

Для ограничения вихревых токов пластины изолированы друг от друга слоем лака. В пазах 2 с внутренней стороны сердечника укладывается трёхфазная обмотка 4. Обмотка (рис. 11, а) состоит из ряда катушек, одними концами соединённых между собой. Каждая из катушек сделана из

Рис. 10. Статор асинхронного двигателя:

1 – сердечник; 2 – паз; 3 – пластина сердечника; 4 – обмотка статора

одного или нескольких витков, изолированных между собой и от стенок паза и распределяется по нескольким пазам. Собранный сердечник запрессовывается в корпус двигателя, начала и концы трёхфазной обмотки выводятся на панель двигателя. Другими концами обмотки выводятся в коробку выводов обмотки статора 16 (см. рис. 9). Если на обмотки статора подать трёхфазное напряжение от электрической сети, то в сердечнике статора

Рис. 11. Соединение обмоток статора:

а) – вид выводов обмотки; б) – соединение звездой; в) – соединение треугольником

возникнет вращающееся магнитное поле. В зависимости от расположения обмоток вращающееся магнитное поле может иметь одну или несколько пар полюсов. Частота вращения магнитного поля пс зависит от числа пар полюсов и рассчитывается по формуле

где/ – частота тока в сети, Гц (пер/с); р – число пар полюсов двигателя.

Если на статоре имеется три обмотки, расположенные под углом 120°, то имеем двухполюсное вращение магнитного поля. Чтобы получить двигатель с меньшей скоростью магнитного поля, необходимо посредством многополюсной обмотки увеличить число полюсов вращающегося магнитного поля. Каждым трём катушкам статорной обмотки соответствует одна пара полюсов вращающегося поля. Следовательно, если трехфазная обмотка статора состоит из К катушек, то число пар полюсов вращающегося поля, возбуждаемого этой обмоткой будет

При количестве катушек К = 3, имеем одну пару полюсов, т.е. р = 3; при К= 6

В большинстве случаев асинхронный двигатель пускается в работу прямым включением обмоток статора в сеть на номинальное напряжение. Электроприводы повышенной мощности, и особенно там, где мощность трансформаторной подстанции ограничена, асинхронный двигатель пускается в работу на пониженном напряжении, т.е. на «звезду» (рис. 11, б). В этом случае концы обмоток XYZ соединяются в одной точке, а к другим концам прикладывается номинальное напряжение 380 В. При соединении «звездой» к катушкам приложено фазное напряжение 220 В. Это позволяет ограничить пусковой ток. Для этого используется автотрансформаторный пуск, пуск через реактивные сопротивления и пуск переключением обмоток статора со звезда на треугольник. Последний способ часто используется в технологическом оборудовании лесохозяйственных предприятий.

По мере разгона двигателя пусковой ток снижается и автомат, управляемый по току, частоте вращения или времени, переключает обмотки статора на номинальное напряжение (380 В), т.е. «треугольником» (рис. 11, в). В этом случае концы катушек соединяются между собой последовательно, т.е. концы катушек соединяются с их началом (Z с А; X с В; Y с С) и они же подсоединяются к номинальному напряжению 380 В. Тогда и на катушках будет приложено фазное напряжение 380 В.

Ротор асинхронного двигателя (рис. 12) устанавливается внутри статора и приводится во вращение за счёт магнитного потока, создаваемого статором, включённого в электрическую сеть.

Сердечник ротора 1 аналогично статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

В зависимости от конструкции ротора асинхронные электродвигатели делятся на двигатели с короткозамкнутым ротором и фазным ротором.

Обмотка короткозамкнутого ротора (рис. 12, а) выполняется из медных стержней 2, закладываемых в пазы ротора. Торцы стержней соединяются между собой при помощи двух медных колец 4.

Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она

Рис. 12. Короткозамкнутый ротор:

а) – ротор с короткозамкнутой обмоткой; б) – обмотка ротора типа «беличье колесо»; а) – короткозамкнутый ротор, залитый алюминием: 1 сердечник ротора; 2 – медные стержни; 3 – вал ротора; 4 – замыкающие кольца; 5 – вентиляционные лопатки; 6 – алюминиевая заливка

будет напоминать беличье колесо. По этому сходству такая обмотка и называется обмоткой типа «беличьей колесо» (рис. 12, б). В роторе медные стержни в пазах не изолируются.

В настоящее время у двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путём заливки 6 (рис. 12, в) в пазы сердечника под давлением.

Заодно с замыкающими кольцами 4 для улучшения отвода тепла отливаются вентиляционные лопатки S. Собранный пакет напрессовывается на вал 3.

Фазные роторы (рис. 13) применяются в асинхронных электродвигателях большой мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств. Статор с обмотками 2 (рис. 13, а) закреплён на корпусе 1. На роторе 3 укладывается трехфазная обмотка 5, с геометрическими осями фазных катушек 8, сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и их концы присоединяются к трём контактным кольцам 6 (рис. 13, б), насаженным на вал 2 и электрически изолированным как от вала, так и друг от друга. Три контактных кольца 6 через изоляционные прокладки жёстко насажены на вал ротора 4. На кольца упираются щётки 7, которые размещены в щёткодержателях, укреплённых в одной из подшипниковых крышек. С помощью щёток 7, находящихся в скользящем контакте с кольцами 6, имеется возможность включать в цепи фазных обмоток регулировочные реостаты 9. Это позволяет, изменяя сопротивление ротора, регулировать частоту вращения ротора и шраничивать пусковые токи.

Рис. 13. Асинхронный двигатель с фазным ротором: а) – общий вид; б) – схема соединения: 1 – корпус; 2 – обмотка статора; 3 – ротор;

4 – вал ротора; 5 – обмотка ротора; 6 – контактные кольца; 7 – щетки; 8 – фазная катушка; 9 – регулировочные реостаты

Источник: studme.org

Что такое асинхронный двигатель и принцип его действия

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

>

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя.
Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему. Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье. остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

>

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Источник: electroinfo.net

Асинхронный двигатель

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат. Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы. У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства. Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение. Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.

Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети. Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам. В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Синхронный и асинхронный двигатель

Работа асинхронного двигателя в генераторном режиме

Асинхронный двигатель с короткозамкнутым ротором схема

Генератор из асинхронного двигателя

Принцип работы частотного преобразователя для асинхронного двигателя

Принцип работы частотного преобразователя для асинхронного двигателя

Источник: electric-220.ru