Порядок работы с мегаомметром
ИНСТРУКЦИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ ПРИ РАБОТЕ С МЕГОММЕТРОМ.
По многочисленным просьбам наших покупателей мы разработали и публикуем “Инструкцию по технике безопасности при работе с мегомметром.” Мы считаем что такая инструкция, или подобная этой, должна быть на каждом предприятии которые в своей работе используют мегомметр.
1.Общие требования безопасности.
1.1. Все работы, которые производятся с использованием мегомметра на
действующих электроустановках, должны выполняться по наряду или
распоряжению, оформленным письменно.
1.2 Для проведения работ по измерению сопротивления изоляции мегомметром в действующих
электроустановках выше 1000 В должны производиться как минимум двумя
работниками: один с группой IV, другой с группой III.Измерение сопротивления
изоляции мегомметром в электроустановках до 1000 В и в недействующих электроустановках
разрешается выполнять одному работнику с группой III.
1.3. Проводники, служащие для подключения мегомметра к токоведущим частям должны быть
сертифицированы и иметь соответствующую изоляцию и изолирующие держатели, обеспечивающие
безопасность производства измерений.
1.4.При измерениях сопротивления изоляции мегомметр необходимо устанавливать на твердой изолированной подставке.
1.5 Работник, проводящий измерения мегомметром, должен знать инструкцию по технике
безопасности и инструкцию по эксплуатации прибора.
1.6.Запрещается производить измерений мегомметром :
1.6.1. если на одной из цепей двухцепных линий напряжением выше 1000 В, если вторая цепь находится под напряжением;
1.6.2. на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В;
1.6.3. во время грозы или при её приближении.
2.Требования безопасности перед началом работ.
2.1. Отключить подачу напряжения и убедиться в
отсутствии напряжения на токоведущих частях, на которых будут проводиться
измерения мегомметром. Повесить на
выключатели соответствующие таблички
2.2.Если есть необходимость, то снять с токоведущих частей заряд, путем предварительного
их заземления.
2.3.Поключить мегомметр к токоведущим частям с помощью соединительных проводов с изолирующими
держателями. В электроустановках выше 1000 В, кроме того, необходимо
пользоваться диэлектрическими перчатками или ковриками.
2.4 Перед началом проведения измерений убедиться в отсутствии людей, работающих на той
части электроустановки, к которой присоединен мегомметр, а так же запретить
находящимся вблизи лицам прикасаться к токоведущим частям, при необходимости,
выставить охрану.
3.Требования безопасности во время проведения измерений мегомметром.
3.1.При работе с мегомметром необходимо соблюдать инструкцию по эксплуатации мегомметра
и строго следить за последовательностью действий при проведении измерений.
3.2.Запрещается прикасаться к зажимам мегомметра и токоведущим частям, к которым он
присоединен.
3.3. Запрещается использование не сертифицированных проводников и зажимов, используемых при
проведении измерений мегомметром
3.4.После проведения измерений мегомметром необходимо снять с токоведущих частей
остаточный заряд путем их кратковременного заземления. Работник, производящий
заземление токоведущих частей, должен пользоваться диэлектрическими перчатками,
защитными очками и стоять на изолирующем основании.
Источник: megommetr.ru
Как пользоваться мегаомметром, измерение изоляции
Электрические сети характеризуются различными параметрами. Одним из важнейших параметров сетей является электрическая изоляция. Изоляция представляет собой какой-либо материал, препятствующий электрическому току протекать в ненужном направлении. Изоляцией может быть защитная оболочка проводов и кабелей. Такие приспособления, как изоляторы, не позволяют контактировать токопроводящим линиям с землёй. Все эти меры по изоляции токопроводящих частей направлены на то, чтобы не допустить короткого замыкания, возгорания или поражения человека электрическим током.
Мегаомметр
Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.
Принцип работы прибора
Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»— размерность числа 10 6 «ом» — единица сопротивления и «метр» — измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:
- генератор постоянного тока;
- измерительная головка:
- клеммы для подключения измеряемого сопротивления;
- набор резисторов для работы измерительной головки в пределах рабочей области;
- переключатель, коммутирующий эти резисторы;
Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.
В настоящее время на смену электромеханическим приборам приходят цифровые. В таких приборах в качестве источников постоянного тока используются либо гальванические элементы, либо аккумуляторы. А также есть новые модели со встроенным сетевым блоком питания.
Работа с мегаомметром
Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.
Обычно этим прибором проводится измерение сопротивления изоляции кабельных линий, электропроводки и электродвигателей. Приборы должны проходить периодическую проверку в метрологической службе и иметь соответствующие документы. Запрещается проводить измерения не проверенным прибором, он должен быть изъят из эксплуатации и отправлен на проверку.
Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.
На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.
Измерения прибором
Оформление этого вида работ на разных предприятиях отличается. В каких-то организациях эти работы выполняются по наряду-допуску, в каких-то по распоряжению или в порядке текущей эксплуатации. Важно, что общие правила выполнения одинаковы. Возьмём для примера технологию измерения сопротивления изоляции кабелей связи на железнодорожном транспорте. Выполнив все необходимые организационно-технические мероприятия (оформление работы, вывешивание плакатов и так далее), приступаем непосредственно к измерениям.
Выбрав пару, на которой нужно произвести измерения, первоначально нужно проверить на ней отсутствие напряжения. С помощью приготовленных ранее заземлителей снимаем заряд с измеряемых жил кабеля и заземляем их. Установив измерительные щупы и сняв заземлители, проводим измерение сопротивления изоляции мегаомметром. Зафиксировав полученные результаты, переключаем измерительный щуп на другую жилу и повторяем процедуру измерения.
Нужно помнить, что после проведения измерений в кабеле остаётся электрический заряд. После окончания измерений с помощью заземлителя необходимо снять электрический заряд. Нужно разрядить и сам мегаомметр. Это делается кратковременным замыканием измерительных шнуров между собой. Работы по установке измерительных щупов и заземлителей проводятся в диэлектрических перчатках.
Измеренная величина сопротивления изоляции заносится в протокол. В протоколе обычно указывается, каким прибором проводилось измерение, величина подаваемого напряжения и измеренное сопротивление изоляции. Величина сопротивления различна для разных видов испытаний. Она сравнивается с допустимой величиной и делается вывод о состоянии изоляции электроустановки.
Для производства работ по измерению сопротивления изоляции нужно руководствоваться следующими данными:
- электроприборы и аппараты напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм. При проведении измерений полупроводниковые приборы, находящиеся в составе аппарата, должны быть зашунтированы для предотвращения выхода их из строя;
- электроприборы и аппараты напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт. Результаты аналогичны п.1;
- электроприборы и аппараты напряжением от 100 до 380 вольт испытываются напряжением мегаомметра 500–1000 вольт. Результаты аналогичны п.1;
- электроприборы и аппараты напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра 1000–2500 вольт. Результаты аналогичны п.1;
- щиты распределительные, распределительные устройства (РУ), токопроводы испытываются напряжением мегаомметра 1000–2500 вольт, величина измеренного сопротивления должна быть не менее 1 МОм, при этом измерять нужно каждую секцию РУ;
- осветительная электропроводка испытывается напряжением мегаомметра 1000 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм.
Периодичность проведения измерений устанавливается на предприятиях. Владельцы электроустановок принимают решения о дальнейших действиях на электроустановке в зависимости от результатов измерений.
Работа по измерению сопротивления изоляции — одна из важнейших работ в электроустановках, которая помогает следить за состоянием электрооборудования и кабельного хозяйства и вовремя принимать меры для безаварийной эксплуатации электрохозяйства.
Источник: instrument.guru
Порядок работы с мегаомметром
Настоящая инструкция по охране труда при работе с мегаомметром доступна для бесплатного просмотра и скачивания.
1. ОБЩИЕ ТРЕБОВАНИЯ ОХРАНЫ ТРУДА
1.1. К выполнению работ с мегаомметром допускается работник не моложе 18 лет, прошедший медицинский осмотр и не имеющий противопоказаний по состоянию здоровья, имеющий необходимую теоретическую и практическую подготовку, прошедший вводный и первичный на рабочем месте инструктажи по охране труда и получивший допуск к работе с применением мегаомметра.
1.2. При выполнении работ с применением мегаомметра работник должен пройти обучение и проверку знаний норм и правил работы в электроустановках и получить соответствующую группу по электробезопасности.
1.3. Работник, работающий с мегаомметром, должен периодически, не реже одного раза в год проходить обучение и проверку знаний требований охраны труда и получать допуск к работам повышенной опасности.
1.4. Работник, независимо от квалификации и стажа работы, не реже одного раза в три месяца должны проходить повторный инструктаж по охране труда.
1.5. Работник, показавший неудовлетворительные знания и навыки безопасного выполнения работ с мегаомметром, к самостоятельной работе не допускается.
1.6. Работнику запрещается пользоваться электроизмерительными приборами, безопасному обращению с которыми он не обучен.
1.7. Во время работы с мегаомметром на работника могут оказывать неблагоприятное воздействие, в основном, следующие опасные и вредные производственные факторы:
— электрический ток, путь которого при замыкании может пройти через тело человека;
— неблагоприятные погодные условия (например, при работе вне помещения);
— неудобная рабочая поза (например, при работе в стесненных условиях).
1.8. Для предупреждения возможности возникновения пожара работник должен соблюдать требования пожарной безопасности сам и не допускать нарушения этих требований другими работниками; курить разрешается только в специально отведенных для этого местах.
1.9. Работник обязан соблюдать трудовую и производственную дисциплину, правила внутреннего трудового распорядка; следует помнить, что употребление спиртных напитков, как правило, приводит к несчастным случаям.
1.10. Если с кем-либо из работников произошел несчастный случай, то пострадавшему необходимо оказать первую помощь, сообщить о случившемся непосредственному руководителю и сохранить обстановку происшествия, если это не создает опасности для окружающих.
1.11. Работник, при необходимости, должен уметь оказать первую помощь, в том числе при поражении электрическим током, пользоваться медицинской аптечкой.
1.12. В непосредственной близости от рабочих мест на видном и доступном месте должны располагаться аптечки, укомплектованные медикаментами и перевязочными средствами с неистекшим сроком годности.
1.13. Для предупреждения возможности заболеваний работнику следует соблюдать правила личной гигиены, в том числе, перед приемом пищи необходимо тщательно мыть руки с мылом.
1.14. Принимать пищу, курить можно только в специально отведенных помещениях.
1.15. Работник, допустивший нарушение или невыполнение требований инструкции по охране труда, рассматривается, как нарушитель производственной дисциплины и может быть привлечен к дисциплинарной ответственности, а в зависимости от последствий — и к уголовной; если нарушение связано с причинением материального ущерба, то виновный может привлекаться к материальной ответственности в установленном порядке.
2. ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ПЕРЕД НАЧАЛОМ РАБОТЫ
2.1. Перед началом работы с мегаомметром необходимо выяснить, к какой категории по степени опасности относится помещение, в котором предстоит выполнять работу.
2.2. Перед началом работ с мегаомметром следует внешним осмотром проверить исправность деталей корпуса, проверить его работу.
2.3. Мегаомметр, имеющий дефекты или просроченную дату периодической поверки, применять в работе не разрешается.
2.4. Для контроля исправности мегаомметр должен подвергаться периодической госповерке.
2.5. Работник должен лично убедиться в том, что все меры, необходимые для обеспечения безопасности выполнены.
2.6. Работник не должен приступать к работе, если у него имеются сомнения в обеспечении безопасности при выполнении предстоящей работы.
2.7. Перед началом работы нужно убедиться в достаточности освещения рабочего места.
2.8. Перед началом работы следует обратить внимание на рациональную организацию рабочего места.
3. ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ВО ВРЕМЯ РАБОТЫ
3.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала.
3.2. В электроустановках напряжением выше 1000 В измерения должны производиться по наряду, в электроустановках напряжением до 1000 В – по распоряжению.
3.3. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.
3.4. Измерять сопротивление изоляции мегаомметром может работник, имеющий группу III.
3.5. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления.
3.6. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
3.7. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).
3.8. В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.
3.9. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается.
3.10. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.
3.11. Работать мегаомметром с приставных лестниц запрещается; для выполнения работ на высоте следует использовать прочные стремянки или подмости.
3.12. Работать мегаомметром, не защищенным от воздействия капель и брызг, в условиях их воздействия, а также на открытых площадках во время дождя или снегопада запрещается.
3.13. Не следует оставлять без надзора мегаомметр, присоединенный к токоведущим частям, а также передавать его лицам, не имеющим права с ним работать.
3.14. При переносе мегаомметрома с одного рабочего места на другое, а также при перерыве в работе и ее окончании мегаомметр должен быть отсоединен от токоведущих частей.
4. ТРЕБОВАНИЯ ОХРАНЫ ТРУДА В АВАРИЙНЫХ СИТУАЦИЯХ
4.1. Если во время работы обнаружится какая-либо неисправность мегаомметра, работа с ним должна быть немедленно прекращена, а неисправный мегаомметр сдан для проверки и ремонта.
4.2. При внезапном исчезновении напряжения в сети, мегаомметр должен быть отключен от токоведущих частей.
4.3. При несчастном случае необходимо немедленно оказать первую помощь пострадавшему, вызвать врача по телефону 103 или 112 или помочь доставить пострадавшего к врачу, а затем сообщить руководителю о случившемся.
4.4. Если произошла травма вследствие воздействия электрического тока, то меры оказания первой помощи зависят от состояния, в котором находится пострадавший после освобождения его от действия электрического тока:
4.4.1. Если пострадавший находится в сознании, но до этого был в состоянии обморока, его следует уложить в удобное положение и до прибытия врача обеспечить полный покой, непрерывно наблюдая за дыханием и пульсом; ни в коем случае нельзя позволять пострадавшему двигаться.
4.4.2. Если пострадавший находится в бессознательном состоянии, но с сохранившимся устойчивым дыханием и пульсом, его следует удобно уложить, расстегнуть одежду, создать приток свежего воздуха, дать понюхать нашатырный спирт, обрызгать водой и обеспечить полный покой.
4.4.3. Если пострадавший плохо дышит (очень редко и судорожно), ему следует делать искусственное дыхание и массаж сердца; при отсутствии у пострадавшего признаков жизни (дыхания и пульса) нельзя считать его мертвым, искусственное дыхание следует производить непрерывно как до, так и после прибытия врача; вопрос о бесцельности дальнейшего проведения искусственного дыхания решает врач.
4.5. При обнаружении пожара или признаков горения (задымление, запах гари, повышение температуры и т.п.) необходимо немедленно уведомить об этом пожарную охрану по телефону 101 или 112.
4.6. До прибытия пожарной охраны нужно принять меры по эвакуации людей, имущества и приступить к тушению пожара.
5. ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ПО ОКОНЧАНИИ РАБОТЫ
5.1. После окончания работы следует отключить всю измерительную аппаратуру.
5.2. По окончании работы необходимо очистить от грязи, пыли и привести в порядок мегаомметр и применяемые средства индивидуальной защиты.
5.3. Обо всех замеченных в процессе работы неполадках и неисправностях применяемого инструмента и оборудования, а также о других нарушениях требований охраны труда следует сообщить своему непосредственному руководителю.
5.4. По окончании работы следует тщательно вымыть руки теплой водой с мылом.
Источник: xn——7cdbxfuat6afkbmmhefunjo4bs9u.xn--p1ai
Как пользоваться мегаомметром
Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6 , «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.
Принцип действия мегаомметра
Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.
В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.
Устройство мегаомметра
Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.
Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» – земля, «Л» – линия и «Э» – экран.
Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».
Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.
Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.
Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Влияние наведенного напряжения
Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.
Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.
Источник: electric-220.ru
Как пользоваться мегаомметром для измерения сопротивления изоляции кабеля?
Чтобы измерить значение сопротивления, а также выявить дефекты кабелей и проводок электрических сетей, используют специально разработанное для этого приспособление мегаомметр.
В названии аппарата ясно распознаются три слова:
“Мега”, ” Ом”, и ”Метр”, где первое слово подразумевает значение измеряемой величины, второе — единицу измерения и третье производное от слова “измерить”.
В основе рабочего процесса мегаомметра лежат принципы закона Ома, касающиеся участков электрической цепи, поэтому любая модификация прибора содержит во внутренней части корпуса:
- измерительную систему тока (амперметр);
- набор выходных клемм;
- генератор постоянного напряжения.
Конструктивные особенности генераторов напряжения могут изменяться в довольно широких границах. В основу их производства положены простые ручные динамо-машины, которые использовались раньше. Современные генераторы оснащены встроенными или внешними источниками питания.
Показатели выходной мощности и напряжения генератора могут варьироваться в пределах нескольких интервалов, а также иметь единственную, фиксированную величину.
Соединительные провода с одной стороны подключают к клеммам мегаомметра, а с другой фиксируют в измеряемой цепи при помощи “крокодилов”. Это специальные приспособления, предназначенные для более надежного соединения.
С помощью амперметра, который встроен внутри агрегата, измеряют показатели проходящего по цепи тока.
Обратите внимание! с известным и проградуированным напряжением генератора калибруются также единицы сопротивления, то есть на шкале, расположенной на измерительной головке, показаны мегаомы, килоомы или и те и другие вместе.
На шкале одного из самых надежных проверенных аналоговых мегаомметров, выпущенных около пятидесяти лет назад М4100/5, расположено две шкалы, что позволяет выполнить замер на двух границах. Новые технологии отображают показания сопротивления более наглядно. На цифровой дисплей выводится уже обработанный цифровой сигнал.
Стрелочный мегаомметр и его устройство
Упрощенная электрическая схема, характерная для аналоговых приборов оснащена такими составными частями:
- генератором постоянного тока;
- измерительной головкой, которая состоит из двух взаимодействующих рамок (рабочая и противодействующая);
- тумблером-переключателем между пределами измерений, который позволяет регулировать работу различных резисторных цепочек, предназначенных для коррекции выходного напряжения и режимов работоспособности головки;
- токоограничивающего резистора.
В свою очередь диэлектрический герметичный прочный корпус данного агрегата оснащен:
- ручкой для комфорта в транспортировке;
- складной портативной рукояткой генератора, вращая которую вырабатывают напряжение;
- рычагом, с помощь которого переключают режимы измерения;
- выходными клеммами, предназначенными для работоспособности всей схемы (к клеммам подключаются соединительные провода).
У большинства моделей мегаомметров имеются три выходные клеммы для подключения. Каждая из них имеет название: земля (З), линия (Л) и экран (Э).
З и Л предназначены для замеров сопротивления изоляции. Э – для того чтобы ликвидировать влияние токовых потерь в случае проведения замера в области двух параллельно проходящих жил кабелей.
В комплектацию прибора входит специальный измерительный провод с характерной конструкцией и экранированным концом, оборудованным двумя клеммами. На одной из них есть маркировка в виде буквы “Э”. Что это значит? Это значит: что ее следует подключить к соответствующей клемме, расположенной на мегаомметре.
Для мегаомметров, основанных на работе внешней сети, характерен тот же принцип работы, ручка здесь уже не крутится, то есть для того чтобы выдать напряжение для испытываемой схемы следует просто удерживать специально предназначенную для этого кнопку. Прибор, способный выдавать не одну комбинацию напряжения, оснащен соответственно несколькими кнопками. Их может быть две, три… даже несколько наборов сочетаний. Такие мегаомметры имеют более сложное внутреннее устройство.
Обратите внимание! Приборы обладают повышенным напряжением, поэтому при их использовании следует соблюдать технику безопасности.
Халатное отношение в работе с высоким уровнем опасности недопустимо. Так как же правильно пользоваться мегаомметром? Из всего вышеописанного вывод напрашивается сам собой:
Согласно мерам безопасности при работе с мегаомметром возможность производить замеры получает только специально обученный и подготовленный человек. Его специализация должна позволять проводить ремонтные работы электроустановок, находящихся под напряжением.
При замере испытуемой схемы соединительные провода и клеммы обладают повышенным напряжением, поэтому работа с ними обязывает пользоваться специальными щупами. Они устанавливаются в области измерительных проводов, поверхность которых усиленно изолирована.
Действие остаточного заряда
Работающий генератор мегаомметра выдает напряжение, поэтому контур земли образует разные значения потенциалов, благодаря которым создается подобие ёмкости, обладающей определенным зарядом. После проведения измерений в проводе остается какая-то часть ёмкостного заряда. Как только человек прикасается к данному участку, электрическая травма обеспечена, поэтому постоянное использование дополнительных мер безопасности не будет лишним, а именно:
- переносное заземление;
- изолированная рукоятка;
- прежде чем подключить прибор к испытуемой схеме следует проверить наличие в ней напряжения, а также остаточного заряда с помощью вольтметра.
Как обеспечить безопасность работы с мегаомметром
Работа выполняется исключительно с помощью исправных мегаомметров (проверен и испытан в условиях специально предназначенной для этого метрологической лаборатории). Поверка позволяет владельцу агрегата обладать специальным сертификатом, который дает ограниченное во времени право на проведение работ, то есть до определенного срока годности. После поверки на корпус прибора специалист наносит клеймо, свидетельствующее о проведенной контрольной поверке. Клеймо содержит дату и номер проверяющего. В обязанности владельца мегаомметра входит соблюдение целостности клейма, так как именно оно дает право на проведение последующих измерений. Нет клейма, значит: прибор не исправен!
При выполнении нескольких замеров подряд в десятижильном кабеле следует постоянно использовать переносное заземление, а также снимать остаточный заряд после каждого замера. Быстрая и безопасная работа с мегаомметром обеспечивается путем соединения одного конца заземляющего проводника с контуром заземления до завершения всех работ. Второй конец проводника крепят на изоляционную штангу, которая предназначена для удобства многоразового накладывания заземления, чтобы безопасно снять остаточный заряд.
Как подключить мегаомметр?
Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.
Источник: odinelectric.ru