Петля фаза ноль определение

Проверка параметров цепи петля фаза-ноль с характеристиками аппаратов защиты

В лаборатории ООО “Электротехника” вы можете заказать проведение проверки согласования параметров цепи петля фаза-ноль с характеристиками аппаратов защиты.

С ценами вы можете ознакомиться позвонив нам по телефону или отправить нам заявку.

Цель проведения измерений

В современных автоматах, как правило, применяются тепловой и электромагнитный расцепители. Первый отключает защищаемый участок цепи в случае перегрузки, а второй — при возникновении короткого замыкания. Номинальные параметры аппарата, защищающего линию, выбираются, исходя из расчетных значений потребляемой мощности и минимального значения Iкз для данной цепи.

Проверка непрерывности защитных проводников и согласования характеристик аппаратов защиты с параметрами петли «фаза-ноль» (далее для краткости — измерение полного сопротивления петли «фаза-ноль» или проверка параметров петли «фаза-ноль») проводится как на этапе приемо-сдаточных испытаний, так и в процессе эксплуатации. Данный вид электроизмерений позволяет определить, правильно ли выбраны автоматические выключатели и достаточно ли хорошо они защищают отходящие линии?

Требования ПУЭ и ПТЭЭП

Зная расчетный ток КЗ, можно проверить временные характеристики аппарата защиты и их соответствие требованиям ПТЭЭП и ПУЭ.

ПТЭЭП, прил. 3, п. 28.4:

Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN—C, TN—C—S, ТN—S).

Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петля фаза-ноль с последующим определением тока короткого замыкания.

При замыкании на нулевой защитный рабочий провод ток однофазного короткого замыкания должен составлять не менее:

  • трехкратного значения номинального тока плавкой вставки предохранителя;
  • трехкратного значения номинального тока нерегулируемого расцепителя автоматического выключателя с обратнозависимой от тока характеристикой;
  • трехкратного значения уставки по току срабатывания регулируемого расцепителя автоматического выключателя обратнозависимой от тока характеристикой;
  • 1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя (1,1 x Iном x N, где Iном – номинальный ток срабатывания, а N = 5, 10 и 20, для характеристик «B», «C» и «D» соответственно).

ПУЭ, 7 изд.

18.37. Электрические аппараты, вторичные цепи и электропроводки напряжением до 1 кВ.

  1. Проверка действия автоматических выключателей.

3.2. Проверка действия расцепителей. Проверяется действие расцепителя мгновенного действия. Выключатель должен срабатывать при токе не более 1,1 верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем.

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

1.7.79. В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл. 1.7.1:

табл. 1.7.1,
Наибольшее допустимое время защитного автоматического отключения для системы TN

Источник: etl46.ru

Проверка и измерение сопротивления петли “фаза-нуль

Методы измерения и проверки сопротивления

Измерить сопротивление петли фаза нуль можно несколькими способами. Как правило, используют один из следующих:

  1. Расчетно-формульный способ.
  2. Измерение полного сопротивления цепи фазы и нулевого защитного проводника для последующего расчета тока однофазного замыкания.
  3. Непосредственный замер тока однофазного замыкания путем замыкания на корпус или нуль.

Последние два способа не требуют расчетов, первый же использует формулу

Zпет = Zп + Zт/3

Zп – полное сопротивление проводов петли фаза – нуль,

– полное сопротивление питающего трансформатора

Исходя из полученного значения, можно определить ток однофазного замыкания на землю

Iк = Uф/ Zпет

Если по расчетам оказывается, что ток однофазного замыкания на землю (ТОЗ) превышает допустимый ток на 30%, то требуется полный замер сопротивления петли фаза нуль Под допустимым током понимается ток, при котором в определенный временной промежуток происходит срабатывание аппарата.

В сети существует несколько видов защиты от однофазных замыканий. Плавкий предохранитель должен выдерживать трехкратный однофазный ток при коротком замыкании в невзывоопасном помещении и четырехкратный – во взрывоопасном. Для автоматического выключателя с обратнозависимой от тока характеристикой эти показатели составляют соответственно три и шесть. Автоматический выключатель с электромагнитным расцепителем при определенном заранее коэффициентом разброса уставок Кр по данным завода изготовителя имеет показатели 1,1 Кр для любых видов помещений. При отсутствии заводских данных, коэффициент в обоих случаях повышается до 1,4 для уставки до 100А, и до 1,25 для уставок более 100А. Под уставкой понимается значение некоей величины, в данном случае – сила тока, по достижении которого происходит изменение состояния системы. При проверке петли фаза нуль учитывается полное (комплексное) сопротивление всей цепи.

Требования безопасности

Проведение измерения сопротивления петли фаза-нуль требует предварительного проведения специалистами электроизмерительной лаборатории ряда организационно-технических мероприятий. Для начала определяется график работ по измерению, поскольку для каждого вида измерительного средства требуется согласовать требования руководства фирмы-клиента. Затем проверяется допуск лиц, которые должны будут осуществить измерение сопротивления. Они должны пройти соответствующий инструктаж и иметь группу по электробезопасности не ниже третьей. Работники должны иметь возраст не менее 18 лет, пройти медицинское освидетельствование, инструктаж, иметь соответствующее образование и навыки, которые определены в МПБЭЭ (Межотраслевых правилах по охране труда и эксплуатации электроустановок).

Ограничения при работе с приборами

В соответствии с теми же МПБЭЭ, запрещается производить ряд манипуляций с измерительными приборами, а именно:

  1. Работа с прибором М417 при измерении сопротивления петли фаза нуль исключает наличие заземления;
  2. Прибор должен находиться под одновременным контролем двух человек и более;
  3. Включение прибора должно быть произведено при отключенном питающем напряжении.
  4. У прибора ЕР180 существует ограничение напряжения в 250В;
  5. Нельзя нажимать кнопку запуска прибора до того, как прибор включен в сеть;
  6. Строго запрещена замена предохранителей в работающем приборе.

Помимо прочего, при измерении сопротивления петли фаза нуль требуется соблюдать ряд условий окружающей среды. Так, температура окружающего воздуха должна быть положительна, погода – сухая, без бурь, штормов и гроз. Необходимо фиксировать атмосферное давление и заносить его в протокол, но на сегодняшний день его влияние на качество измерений сопротивления не отмечено. Зато имеет значение температура проводников – степень их нагрева также фиксируется, и зависит от температуры окружающего воздуха. Если измерение проводится при малых токах и комнатной температуре, ток замыкания может вызвать повышение температуры проводника и, как следствие, повышение его сопротивления. Чтобы избежать ошибок при замерах, используется следующая методика:

  1. Проводится измерение сопротивления петли фаза нуль на вводе электроустановки.
  2. Затем замеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления.
  3. Следующий этап – замер сопротивления от распределительного пункта или щита управления до электроприемника.
  4. Полученные величины увеличивают для учета влияния температуры.
  5. Увеличенные значения сопротивления добавляют в величине сопротивления петли фаза-нуль

Дальнейшая подготовка проводится согласно ПУЭ: «В электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего нормативных значений». Нормативные значения указаны в таблице 5 Правил эксплуатации электроустановок.

Читайте также:  Какой провод фаза

Оформление результатов измерений.

Результат измерения сопротивления петли фаза нуль заносится в протокол, так же, как и данные по автоматическим выключателям, по результатам исследования специалистом-экспертов выносится вердикт о возможности, либо невозможности использования установки, а также о причинах возможных неисправностей.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  1. ПУЭ (Правила устройства электроустановок) 7-е издание раздел 1, гл. 1.8, п. 1.8.39, пп. 4, гл.1.7., п. 1.7.79;
  2. РД 34.45-51.300-97 “Объем и нормы испытаний электрооборудования”;
  3. Проектная документация;
  4. ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3, п. 28, пп. 28.4.

Электротехническая лаборатория “ПодКлюч Плюс” имеет ряд важных преимуществ: –

Оперативная обработка заказа после его получения;

– Предоставление гарантии на качество выполненной работы;

– Каждый протокол диагностики имеет копию свидетельства нашей электротехнической лаборатории;

Кроме этого у нас работают сотрудники с большим опытом и нужной квалификацией. Еще у нас приемлемые цены, в чем Вы можете сами убедиться.

Не откладывайте вопрос измерения сопротивления изоляции в долгий ящик, ведь это, прежде всего, безопасность. А во-вторых данная процедура может предупредить возникновения аварийных ситуаций, убытки от которых будут в десятки раз дороже стоимости диагностики.

Источник: etl.iv.ru

Измерение петли фаза-ноль

Если в вашем доме или квартире регулярно срабатывают автоматические выключатели на вводах (перед электросчетчиком), и даже увеличение их номинала не дает результата – невозможно, например, одновременно включить стиральную машину и электрический чайник, то вам стоит провести замер полного сопротивления цепи. На языке профессионалов эта процедура называется «измерение сопротивления петли фаза-ноль».

Что такое петля фаза-ноль?

В силовых подстанциях напряжением до 1 тыс. вольт, с которых подается электроэнергия бытовым потребителям, выходные обмотки трехфазного трансформатора соединены звездой – c так называемой глухозаземленной технической нейтралью. По ней, вследствие естественного перекоса фаз, не выходящего за пределы норм эксплуатации электроустановок, может течь ток.

Теперь условно представьте, что вы единственный потребитель на линии и у вас есть только один электроприбор – электрическая лампочка. Один конец подающейся вам фазы подключен к технической нейтрали трансформатора, другой – к центральной клемме (надеемся, что это именно так) электропатрона. Через нить лампы она соединяется с нейтральным проводом.

Так образуется непрерывное кольцо, по которому циркулирует электрический ток. Вот оно и называется петлей фаза-ноль, которая обладает сопротивлением, складывающимся из удельного сопротивления проводников и нити лампы накаливания.

На практике количество элементов, составляющих полное сопротивление цепи, может быть значительно большим. Часть из них является естественным условием нормальной эксплуатации электроустановки. Другие возникают в результате нарушений, которые до поры до времени не приводят к катастрофическим последствиям.

Например, дома у вас могут быть ослаблены скрутки в клеммных коробках. Они способны добавить в общую копилку до сотен Ом! А на уличном столбе треснувший изолятор отдает часть фазы земле или заброшенный мальчишками на провода воздушный змей частично закорачивает электролинию и вызывает едва заметное – на пару вольт, падение напряжения. Вот именно эти нарушения и выявляются измерением петли фаза-ноль.

Почему срабатывают автоматы на вводах

Причины частого и необъяснимого срабатывания автоматов на вводах бывают двух типов:

  1. Внешние, обусловленные нарушениями в работе электролинии.
  2. Внутренние, из-за неисправности электропроводки в доме.

Внешние характеризуются стойким несоответствием норме номинала напряжения. Например, оно у вас постоянно не 220, а 200 вольт. Это сопровождается увеличением силы тока, протекающего по вашей домашней электропроводке. Увеличение номинала автоматического выключателя на входе, например, с 25 до 40 А в этом случае вам ничего не даст, кроме того, что сам автомат будет нагреваться, а при дальнейшем вашем упорствовании может даже эффектно взорваться.

Внутренних причин несколько. Самые распространенные из них:

  • Неплотный контакт в клеммных коробках.
  • Не соответствующее номиналу тока сечение проводов.
  • Уменьшение сопротивления изоляции проводов в результате естественного старения.

Внешне они проявляются нагревом проводников и скруток. Поэтому установка более мощных автоматических выключателей приведет к пожару. Конечно, можно потратить день на то, чтобы руками перещупать все розетки, провода и скрутки в доме. Но, во-первых, это чревато электротравмой. И, во-вторых, слишком субъективно. Измерение даст лучший результат.

Как и чем измерять

Сразу скажем, что замерить сопротивление петли фаза-ноль на внешнем контуре (от силовой подстанции до вводов в дом) могут только лица из оперативно-технического персонала местного РЭС. Вам этого делать категорически нельзя. Во-вторых, это сделать не удастся из-за отсутствия нужных приборов, а если и получится, то вы не сможете воспользоваться полученным значением. Ведь вам не с чем его сравнивать – у вас нет доступа к протоколам испытаний электрической сети.

Дома вы можете сделать это двумя способами:

  1. Использовать сетевое напряжение и прибор с эталонным сопротивлением.
  2. Протестировать схему с помощью внешнего источника напряжения.

Перед началом измерений вам надо определить общую длину электрических проводников и вычислить их удельное сопротивление. При этом вы должны считать, что их сечение соответствует нормам электробезопасности при пропускании через них тока, сила которого равна номиналу автоматических выключателей на вводе. После этого рассчитываете сопротивление всех энергопотребителей, для чего делите квадрат напряжения на величину их паспортной мощности. Полученное значение суммируете с удельным сопротивлением проводников.

Измерение прибором с эталонным сопротивлением

В этом случае вы оставляете домашнюю электропроводку подключенной к электрической сети. Находите самую дальнюю от вводных автоматов розетку. Если контуров несколько, то измерение проводятся отдельно для каждого. Ваша цель – установить величину падения напряжения при включении эталонного сопротивления в цепь измерителя.

Если у вас нет специальных приборов для таких измерений, то используйте мультиметр и сопротивление 100 Ом, рассчитанное на работу с напряжением 230 вольт. Установив количество вольт в розетке без нагрузки, подключаете эталонное сопротивление к нейтральной линии и повторяете опыт.

После этого вам надо сравнить расчетное падение напряжения с фактическим, эти значения не должны отличаться более чем на 5–6 вольт. Проведя подобные опыты с каждой розеткой, и сдвигаясь при этом в сторону вводных автоматов, вы найдете проблемную клеммную коробку или участок проводки.

От необходимости проводить вычисления после опытов вас избавят приборы MZC-300 или ИФН-200, они выводят на дисплей значение сопротивления тестируемого участка цепи.

Измерение с внешним источником напряжения

Внешним источником напряжения может стать гальванический мегомметр. Однако при его использовании надо принять меры предосторожности и подготовить электропроводку.

  • Отключить внешнюю сеть.
  • Закоротить выходные клеммы автоматического выключателя на вводах или в ближайшей клеммной коробке.
  • Отключить всех потребителей от розеток, вместо них установить эталонные сопротивления по 100 Ом каждое.
  • Вместо светодиодных и люминесцентных ламп (экономок) установить лампы накаливания.
  • Если есть дифавтоматы (АВДТ) или УЗО, установить между входными и выходными клеммами с маркировкой N перемычки из проводников того же сечения, что и в фазной линии.
Читайте также:  Цветовая маркировка проводов трехфазной сети

Предел измерений мегомметра устанавливается по шкале кОм. Произведите опыт на самой дальней розетке и сравните полученное значение с вычисленной суммой удельного сопротивления проводников, всех эталонных сопротивлений в розетках и ламп в светильниках.

Измерение полного сопротивления цепи фаза-ноль является частью регламента по обслуживанию электрических сетей и электроустановок. Оно дает наиболее точную картину их состояния.

Поэтому результаты протоколируются и являются основанием для проведения ремонта или нахождения виновных в случае чрезвычайных ситуаций. В бытовых условиях оно применяется редко. Однако вы можете провести его и самостоятельно. При этом надо строго соблюдать все меры электробезопасности.

Источник: electriktop.ru

Сопротивление петли фаза-нуль в системе TT

В целях соблюдения правил электробезопасности все электроустановки должны регулярно проходить испытания, в ходе которых замеряется изоляция кабелей, измеряются сопротивления контура защитного заземления и так далее. Важным этапом проведения испытаний является измерение сопротивления петли фаза-нуль, в ходе которого определяется, обеспечит ли вводной автомат автоматическое отключение при коротком замыкании (КЗ).

Петля фаза-нуль складывается из фазных проводников, обмотки трансформатора подстанции и нулевых проводников, включенных последовательно, соответственно и сопротивление самой петли складывается из сопротивлений ее составляющих. Расчеты петли довольно сложная процедура, поскольку в реальных сетях к их сопротивлению добавляются переходные сопротивления большого числа контактов, автоматов, коммутационных элементов. Реальные значения сопротивлений, а, следовательно, и токов однофазных замыканий которые обеспечивает петля фаза-нуль можно определить только в результате замеров.

Петля фаза-ноль в системе TT и ее особенности

В системах с глухозаземленной нейтралью трансформатора TN петля фазы и нуля складывается из нулевых и фазных проводов. В системе TN-C она представлена одним фазным контуром вместе с совмещенным PEN проводником, а в TN-S двумя:

  • петля фазы ноля (проводник N);
  • петля провода фазы трансформатора и защитных проводников (PE);

Так как в этой системе нулевой и защитный проводник разделены. В первом случае причиной срабатывания защитных автоматов будет КЗ между фазой и нулем, для системы TN-S дополнительно автомат сработает и при замыкании фазы, например из-за нарушения изоляции проводов на корпус электроустановки связанный с защитным заземлением.

Несколько иначе обстоит дело в системе TT, применяемой для электропитания временных объектов, а также широко используемой при передаче электроэнергии посредством воздушных линий, например в сельской местности. Как и для TN здесь также применяются заземления нейтрали трансформаторов, только защитного проводника к контуру заземления подстанции не идет. Защитное заземление со стороны потребителя обеспечивается повторным заземлением, отдельным контуром в непосредственной близости к электроустановкам.

Отсутствие нулевых защитных проводов ограничивает применение защиты только короткими замыканиями между нулем и фазой. Сопротивление петли в системе TT следует измерять между фазным проводником и проводом защитного заземления, оно будет представлено суммой сопротивлений:

  • фазных проводов;
  • обмоток трансформаторов;
  • контура заземления подстанции;
  • земли и повторного заземления;

и может иметь достаточно высокое сопротивление, поэтому пробой фазы на корпус заземленного электрооборудования не обязательно окончится защитным отключением вводного автомата.

здесь: Iкз – ток однофазного КЗ, U_ном – номинальное напряжение сети, Zп – полное сопротивление петли.

Очевидно, что высокое сопротивление просто ограничит ток и его будет недостаточно для срабатывания автоматического выключателя. Именно поэтому ГОСТ 30331.3-95 в системах TT рекомендовано выполнение следующего ограничения:

где – Rп – полное сопротивление, а I∝ – ток срабатывания автомата.

Согласно требованиям того же стандарта в сетях TT для защиты от поражений электрическим током необходимо использовать устройства защитного отключения – УЗО, реагирующие на дифференциальные токи. Защита от сверхтоков допускается при очень низких значениях сопротивлений, чтобы выполнялось условие.

Смотрите также другие статьи :

Среди опасных факторов, характерных вредным воздействиям электромагнитного излучения принято считать частоту и напряженность электромагнитного поля. Еще одной особенностью, свидетельствующей о чрезвычайной опасности ЭМИ, является отсутствие явных признаков их влияния на организм.

Таким образом, провод ПВС предназначен для подключения электрических приборов в электросеть. В соответствие со схемой реализации защитного заземления и количеством фаз питающей сети электроприборов, он может содержать от двух до пяти гибких медных жил, площадью сечений 0.5 – 25 мм², это позволяет подобрать гибкий проводник практически под любую нагрузку

Источник: cenerg.ru

Сопротивление цепи фаза – ноль

В статье рассмотрены метод расчета сопротивления цепи фаза – ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при проектировании электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль RLN равно:

где Zт/3 – сопротивление трансформатора, Ом; RΣпер – суммарное переходное сопротивление контактов, Ом; RΣавт –суммарное сопротивление всех автоматических выключателей, Ом; Rn– удельное сопротивление n-го участка цепи Ом/км (по таблице 1); Ln – длина n-го участка цепи, км; Rдуги – сопротивление дуги в месте короткого замыкания, Ом.

Сопротивления кабелей и отдельно фазных и нулевых жил различных сечений при температуре +65 градусов приведены в таблице 1. Данная температура жил соответствует работе кабеля при номинальной нагрузке. В таблице 1 не учтены индуктивные составляющие сопротивлений, которые в кабелях пренебрежимо малы. При этом следует иметь ввиду, что при использовании проводов индуктивное сопротивление сети может иметь соизмеримую величину с активным сопротивлением жил, особенно при увеличении расстояния между проводами.

В таблице 2 приведены сопротивления трансформатора 10 (6) кВ при вторичном напряжении 400/230 В для случая соединения обмоток по схеме «треугольник-звезда». При соединении обмоток трансформатора по схеме «звезда-зигзак» оценить сопротивление трансформатора также можно по этой таблице. При соединении обмоток по схеме «звезда-звезда» сопротивление трансформатора в 3 – 3,5 раза больше, поэтому это соединение используется реже.

В таблице 3 приведены ориентировочные величины сопротивлений автоматических выключателей (по данным каталога по модульным выключателям АВВ).

Переходные сопротивления контактов, как правило, вносят несущественную часть в общее сопротивление цепи фаза – ноль. Но при большом количестве контактов их сопротивление необходимо учитывать. Переходное сопротивление болтовых соединений, как правило, мало и не превышает величины сопротивления 1 метра подключаемого кабеля (при подключении кабелей больших сечений переходное сопротивление контактов соответственно меньше, чем у кабелей меньшего сечения). Переходное сопротивление различных контактных колодок и сжимов, используемых в групповых сетях, для расчетов можно принять равным 0,01 Ом.

Читайте также:  Реле тока принцип работы

Активное сопротивление дуги в месте короткого замыкания в значительной степени зависит от мощности и схемы подключения трансформатора, длины и сечения кабелей, а также в большой степени от длины дуги. Ориентировочные значения сопротивления дуги в зависимости от величины сопротивления цепи фаза – ноль цепи приведены в таблице 4. С большим количеством графиков зависимостей сопротивления дуги от мощности трансформатора, длины и сечения кабелей, можно ознакомиться в ГОСТ 28249-93.

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

I ном. авт. выкл, А

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

– трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» – по таблице 2 находим Zт/3=0,014 Ом;

– питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой – 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

– распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

– групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

– автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

– переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RLN=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RLN=0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RLN=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом – 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.

Источник: electromontaj-proekt.ru