Контакты к магнитным пускателям
Компания «РЕОН ТЕХНО» уже более 25 лет занимается производством и реализацией электротехнической продукции, в числе которой значатся не только устройства релейной защиты и автоматики, но также контакты для коммутационной аппаратуры и запчасти для них. И довольно большую долю в ассортименте последней группы товаров играют контакты к магнитным пускателям.
Назначение контактов к магнитным пускателям
Данные виды устройств применяются в качестве запчастей для магнитных пускателей, сфера применения которых довольно широка. Так, подобные приборы используются в схемах:
- дистанционного управления освещением,
- управления насосами и разного рода компрессорами,
- управления кран балками и кондиционерами,
- управления ленточными конвейерами или тепловыми печами и так далее.
Словом, область применения пускателей и, соответственно, контактов к ним очень обширна. Они способствуют слаженной и четкой работе всего устройства. Именно поэтому их по праву можно назвать незаменимыми деталями, которые обязательно должны быть в наличии.
В компании «РЕОН ТЕХНО» вы можете заказать контакты к магнитным пускателям следующих типов:
Купить контакты к магнитным пускателям
Если вам важна не только выгодная цена контактов к магнитным пускателям, но и качество данных деталей, то рекомендуем рассмотреть ассортимент нашего производства. В чем же их основные преимущества:
- Длительный срок службы и эксплуатации,
- Применение качественных материалов при производстве (в основном все контакты изготавливаются из латуни с серебряными напайками),
- Удобство и легкость монтажа деталей,
- Наличие необходимых сертификатов и удостоверений, подтверждающих качество и безопасность продукции,
- Широкий ассортимент, включающий как подвижные, так и не подвижные устройства.
И, конечно, одним из самых главных преимуществ остаются цена и возможность поставки данного вида продукции во все города страны. На данный момент мы активно сотрудничаем с такпими городами, как:
- Москва,
- Пятигорск,
- Ростов-на-Дону,
- Челябинск и многие другие.
Чтобы заказать контакты к магнитным пускателям, позвоните по номеру 8 (8352) 24-24-40. Наши операторы на связи и помогут ответить на любые интересующие вас вопросы, окажут техническую поддержку, проконсультируют на необходимую тему, а также, в случае необходимости или затруднений, смогут оформить заказ.
Источник: reon.ru
Магнитный пускатель в системах автоматики
Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.
Чем отличается контактор от магнитного пускателя?
Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.
Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.
Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.
Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.
А вот устройства на следующих рисунках правильнее называть контакторами:
Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.
В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.
Устройство и принцип работы магнитного пускателя
Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).
В общем случае устройство магнитного пускателя выглядит так:
Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.
Схема подключения магнитного пускателя
Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.
Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.
Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:
Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.
Схема «самоподхвата» магнитного пускателя
Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).
На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.
Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.
Подключение двигателя через пускатель с тепловым реле
На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.
Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.
>
Реверсивный пускатель
Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.
Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.
Схема реверсивного магнитного пускателя выглядит так:
Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.
При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».
При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.
Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).
Источник: lazysmart.ru
Как подключить магнитный пускатель. Схема подключения.
02 Мар 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем. В первой части статьи мы с Вами познакомились с устройством, назначением и работой магнитного пускателя, а сегодня рассмотрим его электрическую схему подключения.
Но прежде чем собирать схему, давайте сделаем небольшое отступление и познакомимся с одним важным элементом схемы управления работой магнитного пускателя – кнопка.
Как Вы уже догадались кнопками «Пуск», «Стоп», «Вперед», «Назад» осуществляется дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует. Управляющие кнопки выпускают двух видов: с размыкающим и замыкающим контактом.
Кнопка «Стоп».
Кнопку «Стоп» легко отличить по красному цвету.
В кнопке используется размыкающий (нормально замкнутый) контакт, через который проходит напряжение питания в схему управления пускателем.
В начальном положении, когда кнопка не нажата, подвижный контакт кнопки поддавливается снизу пружиной и собой замыкает два неподвижных контакта, соединяя их между собой. И если кнопка стоит в электрической цепи, то в этот момент через нее протекает ток.
Когда же необходимо разомкнуть цепь — кнопку нажимают, подвижный контакт отходит от неподвижных контактов и цепь размыкается.
При отпускании кнопка опять возвращается в исходное положение пружиной, поддавливающей подвижный контакт, и он опять замыкает собой оба неподвижных контакта. На рисунке показаны контакты кнопки в нажатом и не нажатом положении.
Кнопка «Пуск».
Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.
Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.
При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.
Схемы подключения магнитного пускателя.
Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.
Для удобства понимания схема разделена на две части: силовая часть и цепи управления.
Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.
Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».
При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.
При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.
Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.
Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».
А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.
Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.
А теперь рассмотрим монтажную схему цепи управления пускателем.
Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.
Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».
Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.
Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.
Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.
>
Источник: sesaga.ru
Контакторы, пускатели
Итак, приступим к контакторам.
Контактор – это одноступенчатый аппарат, предназначенный для частых дистанционных включений и отключений электрических силовых цепей. Замыкание контактов контактора может осуществляться электромагнитным или гидравлическим приводом. Наибольшее распространение получили электромагнитные контакторы.
То есть по сути – это своеобразный рубильник, но с автоматическим управлением, с помощью электромагнитного привода. Этот самый привод позволяет гонять контакты туда-сюда довольно часто и много раз. У контакторов выше механическая и электрическая износостойкость, они рассчитаны на количество циклов включения-отключения, исчисляемое сотнями тысяч и миллионами. Ниже на картинке (стырено с гугла) представлено схематическое изображение контактора для прояснения принципа его работы.
Номером 1 у нас обозначается неподвижный контакт, номером 2 – подвижный. Подвижный контакт закрепляется на якоре 3 электромагнита. Под номером 4 скрывается сердечник 4, на котором установлена втягивающая катушка 5. Номер 6 – это дугогасительная камера, предназначенная, как ни странно, для гашения дуги при размыкании контактов.
При подаче управляющего напряжения на катушку 5 возникает ток, создающий магнитное поле, притягивающее якорь 3, контакт 2 замыкается с контактом 1. При отключении управляющего напряжения контакт 2 пружинами отбрасывается от контакта 1. Возникшая от разрыва контактов электрическая дуга гасится в камере 6.
Однако вышеприведенный алгоритм справедлив для Нормально Разомкнутых (Н.Р. или N.O.) контактов. Для Нормально Замкнутых (Н.З. или N.C.) контактов все происходит с точностью до наоборот. В нормальном положении, когда на управляющую катушку не подано напряжение, контакты замкнуты. При подаче напряжения на катушку 5 создается магнитное поле, размыкающее контакты. При отключении напряжения контакты вновь замыкаются.
В корпусе одного контактора могут быть разные сочетания контактов: 3NO, 4NO, 2NO+2NC, 3NC+NO, 3NO+NC, 4NC. Также к контактору дополнительно пристыковываются дополнительные контакты, предназначенные для цепей управления и сигнализации. Ниже на картинке представлены контакторы – промышленный и модульный.
Клеммы А1, А2 – зажимы подключения катушки управления контактором. 1,3,5, 2,4,6 – клеммы подключения силовых контактов. 21NC, 22NC – нормально замкнутые допконтакты, 7(13), 8(14) – нормально разомкнутые допконтакты.
К клеммам силовых контактов подключается сама коммутируемая цепь, будь то электродвигатели, сети освещения и другие. Подавая напряжение на зажимы А1, А2, можно управлять включением/отключением контактора. Ну а допконтакты включаются во вторичные цепи, либо сигнализируя о положении контактора, либо непосредственно участвуя в схеме управления. При этом напряжение, подаваемое на катушку контактора, может отличаться от напряжения коммутируемой цепи. То есть силовые контакты могут быть рассчитаны на вполне нормальные переменные 380 В, то катушка может управляться от 24 В постоянного тока, либо 220 В переменного, либо 220 В, но постоянного тока. Все зависит от способа применения контактора. При выборе контактора необходимо учитывать – на какое напряжение рассчитаны его силовые контакты, и каким напряжением управляется его катушка.
Есть разные способы применения контакторов, назову лишь основные категории для контакторов переменного тока:
АС-1 – активная или слабоиндуктивная нагрузка;
АС-2 – пуск и торможение электродвигателей с фазным ротором;
АС-3 – пуск двигателей с короткозамкнутым ротором и отключение вращающегося двигателя;
АС-4 – пуск и торможение двигателей с короткозамкнутым ротором.
Как мы видим – тяжелее всего включать и отключать (а особенно тормозить) двигатели с короткозамкнутым ротором, это связано с большими бросками токов.
Есть и другие, более специфичные, категории применения, но рассматривать мы их, конечно, не будем, ввиду их меньшей распространенности.
Отдельно стоит отметить контакторы постоянного тока. Применяются они, в основном, для управления двигателями постоянного тока на электрическом транспорте и для включения и отключения электропечей сопротивления (грубо говоря, это такие большие духовки с ТЭНами). Такие контакторы крупнее габаритами, у них больше дугогасительная камера – все из-за того, что коммутировать постоянный ток куда сложнее, чем переменный (дугу на переменном токе проще разорвать). Вы наверняка слышали довольно громкие хлопки, катаясь на троллейбусе – это щелкают те самые контакторы постоянного тока.
Ниже на картинке представлены контакторы на постоянном токе (слева) и на переменном (справа) на номинальный ток 63 ампера, приведенные приблизительно к одному масштабу (извиняюсь за шакалов).
Как уже было сказано выше – в основном контакторы применяются для включения и отключения (торможения) электродвигателей. А у этих двигателей есть одна небольшая особенность – они не очень то любят работать с перегрузом и как следствие – с перегревом. Если не ошибаюсь, тот же асинхронный двигатель может работать с перегрузом до 5%, а далее его нужно отключить. Обычный автоматический выключатель не может обеспечить такой точности, к тому же – у автоматических выключателей дискретная градация по номиналам (например – 6, 10, 16, 20, 25 ампер и т.д.). В таких случаях на помощь приходит такое устройство как тепловое реле.
Тепловое реле – это электрический аппарат, предназначенный для защиты двигателей от токовой перегрузки. Принцип действия этого реле основан на разном тепловом расширении слоев биметаллической пластины (более подробно в посте про автоматы). Однако тепловое реле позволяет точно выставить значение тока, при котором оно сработает, что актуально для защиты электродвигателей. Тепловое реле приставляется к контактору, образуя, таким образом, пускатель. Ниже на картинке приведены все три элемента.
Далее приведу простейшую схему прямого пуска электродвигателя для того, чтобы объяснить принцип действия пускателя.
На данной схеме нажатием кнопки SBT подаем напряжение на катушку контактора КМ – контактор включается, дополнительный контакт КМ замыкается, а значит кнопку SBT держать нет необходимости, лампа HL сигнализирует о включении контактора КМ. С помощью кнопки SBC цепь размыкается – контактор отключается. В случае, когда ток в двигателе превысит уставку на тепловом реле КК, разомкнется нормально замкнутый контакт КК – контактор КМ отключится. Автомат SF защищает вторичные цепи от короткого замыкания в них.
Однако, в сумме получается аж 3 аппарата – автомат для защиты линии, контактор для включения и отключения двигателя и тепловое реле для защиты двигателя от перегруза. Поэтому есть еще одно решение – аппарат, в котором совмещен автомат и тепловое реле с возможностью регулирования уставки по перегрузу. Данный аппарат называется автоматом защиты двигателя.
Ниже на картинке представлены примеры данного аппарата.
Как видно на изображении, включение/отключение производится 3 способами: поворотной ручкой, либо кнопками, либо клавишей.
Также у автомата защиты двигателя есть еще некоторые особенности:
1. Высокая отключающая способность (до 50-100кА)
2. Времятоковая характеристика срабатывания автомата учитывает большие пусковые токи электродвигателей.
3. Тепловой расцепитель имеет температурную компенсацию, необходимую для того, чтобы нивелировать влияние температуры окружающей среды на биметаллическую пластину.
4. Имеют высокую по сравнению с обычными автоматами механическую и электрическую износостойкость.
На этом пока все про контакторы и пускатели, еще одно применение контакторов будет рассмотрено подробнее в посте про категории надежности электроснабжения и схемы АВР.
>
Источник: pikabu.ru
Контакторы, пускатели
Итак, приступим к контакторам.
Контактор – это одноступенчатый аппарат, предназначенный для частых дистанционных включений и отключений электрических силовых цепей. Замыкание контактов контактора может осуществляться электромагнитным или гидравлическим приводом. Наибольшее распространение получили электромагнитные контакторы.
То есть по сути – это своеобразный рубильник, но с автоматическим управлением, с помощью электромагнитного привода. Этот самый привод позволяет гонять контакты туда-сюда довольно часто и много раз. У контакторов выше механическая и электрическая износостойкость, они рассчитаны на количество циклов включения-отключения, исчисляемое сотнями тысяч и миллионами. Ниже на картинке (стырено с гугла) представлено схематическое изображение контактора для прояснения принципа его работы.
Номером 1 у нас обозначается неподвижный контакт, номером 2 – подвижный. Подвижный контакт закрепляется на якоре 3 электромагнита. Под номером 4 скрывается сердечник 4, на котором установлена втягивающая катушка 5. Номер 6 – это дугогасительная камера, предназначенная, как ни странно, для гашения дуги при размыкании контактов.
При подаче управляющего напряжения на катушку 5 возникает ток, создающий магнитное поле, притягивающее якорь 3, контакт 2 замыкается с контактом 1. При отключении управляющего напряжения контакт 2 пружинами отбрасывается от контакта 1. Возникшая от разрыва контактов электрическая дуга гасится в камере 6.
Однако вышеприведенный алгоритм справедлив для Нормально Разомкнутых (Н.Р. или N.O.) контактов. Для Нормально Замкнутых (Н.З. или N.C.) контактов все происходит с точностью до наоборот. В нормальном положении, когда на управляющую катушку не подано напряжение, контакты замкнуты. При подаче напряжения на катушку 5 создается магнитное поле, размыкающее контакты. При отключении напряжения контакты вновь замыкаются.
В корпусе одного контактора могут быть разные сочетания контактов: 3NO, 4NO, 2NO+2NC, 3NC+NO, 3NO+NC, 4NC. Также к контактору дополнительно пристыковываются дополнительные контакты, предназначенные для цепей управления и сигнализации. Ниже на картинке представлены контакторы – промышленный и модульный.
Клеммы А1, А2 – зажимы подключения катушки управления контактором. 1,3,5, 2,4,6 – клеммы подключения силовых контактов. 21NC, 22NC – нормально замкнутые допконтакты, 7(13), 8(14) – нормально разомкнутые допконтакты.
К клеммам силовых контактов подключается сама коммутируемая цепь, будь то электродвигатели, сети освещения и другие. Подавая напряжение на зажимы А1, А2, можно управлять включением/отключением контактора. Ну а допконтакты включаются во вторичные цепи, либо сигнализируя о положении контактора, либо непосредственно участвуя в схеме управления. При этом напряжение, подаваемое на катушку контактора, может отличаться от напряжения коммутируемой цепи. То есть силовые контакты могут быть рассчитаны на вполне нормальные переменные 380 В, то катушка может управляться от 24 В постоянного тока, либо 220 В переменного, либо 220 В, но постоянного тока. Все зависит от способа применения контактора. При выборе контактора необходимо учитывать – на какое напряжение рассчитаны его силовые контакты, и каким напряжением управляется его катушка.
Есть разные способы применения контакторов, назову лишь основные категории для контакторов переменного тока:
АС-1 – активная или слабоиндуктивная нагрузка;
АС-2 – пуск и торможение электродвигателей с фазным ротором;
АС-3 – пуск двигателей с короткозамкнутым ротором и отключение вращающегося двигателя;
АС-4 – пуск и торможение двигателей с короткозамкнутым ротором.
Как мы видим – тяжелее всего включать и отключать (а особенно тормозить) двигатели с короткозамкнутым ротором, это связано с большими бросками токов.
Есть и другие, более специфичные, категории применения, но рассматривать мы их, конечно, не будем, ввиду их меньшей распространенности.
Отдельно стоит отметить контакторы постоянного тока. Применяются они, в основном, для управления двигателями постоянного тока на электрическом транспорте и для включения и отключения электропечей сопротивления (грубо говоря, это такие большие духовки с ТЭНами). Такие контакторы крупнее габаритами, у них больше дугогасительная камера – все из-за того, что коммутировать постоянный ток куда сложнее, чем переменный (дугу на переменном токе проще разорвать). Вы наверняка слышали довольно громкие хлопки, катаясь на троллейбусе – это щелкают те самые контакторы постоянного тока.
Ниже на картинке представлены контакторы на постоянном токе (слева) и на переменном (справа) на номинальный ток 63 ампера, приведенные приблизительно к одному масштабу (извиняюсь за шакалов).
Как уже было сказано выше – в основном контакторы применяются для включения и отключения (торможения) электродвигателей. А у этих двигателей есть одна небольшая особенность – они не очень то любят работать с перегрузом и как следствие – с перегревом. Если не ошибаюсь, тот же асинхронный двигатель может работать с перегрузом до 5%, а далее его нужно отключить. Обычный автоматический выключатель не может обеспечить такой точности, к тому же – у автоматических выключателей дискретная градация по номиналам (например – 6, 10, 16, 20, 25 ампер и т.д.). В таких случаях на помощь приходит такое устройство как тепловое реле.
Тепловое реле – это электрический аппарат, предназначенный для защиты двигателей от токовой перегрузки. Принцип действия этого реле основан на разном тепловом расширении слоев биметаллической пластины (более подробно в посте про автоматы). Однако тепловое реле позволяет точно выставить значение тока, при котором оно сработает, что актуально для защиты электродвигателей. Тепловое реле приставляется к контактору, образуя, таким образом, пускатель. Ниже на картинке приведены все три элемента.
Далее приведу простейшую схему прямого пуска электродвигателя для того, чтобы объяснить принцип действия пускателя.
На данной схеме нажатием кнопки SBT подаем напряжение на катушку контактора КМ – контактор включается, дополнительный контакт КМ замыкается, а значит кнопку SBT держать нет необходимости, лампа HL сигнализирует о включении контактора КМ. С помощью кнопки SBC цепь размыкается – контактор отключается. В случае, когда ток в двигателе превысит уставку на тепловом реле КК, разомкнется нормально замкнутый контакт КК – контактор КМ отключится. Автомат SF защищает вторичные цепи от короткого замыкания в них.
Однако, в сумме получается аж 3 аппарата – автомат для защиты линии, контактор для включения и отключения двигателя и тепловое реле для защиты двигателя от перегруза. Поэтому есть еще одно решение – аппарат, в котором совмещен автомат и тепловое реле с возможностью регулирования уставки по перегрузу. Данный аппарат называется автоматом защиты двигателя.
Ниже на картинке представлены примеры данного аппарата.
Как видно на изображении, включение/отключение производится 3 способами: поворотной ручкой, либо кнопками, либо клавишей.
Также у автомата защиты двигателя есть еще некоторые особенности:
1. Высокая отключающая способность (до 50-100кА)
2. Времятоковая характеристика срабатывания автомата учитывает большие пусковые токи электродвигателей.
3. Тепловой расцепитель имеет температурную компенсацию, необходимую для того, чтобы нивелировать влияние температуры окружающей среды на биметаллическую пластину.
4. Имеют высокую по сравнению с обычными автоматами механическую и электрическую износостойкость.
На этом пока все про контакторы и пускатели, еще одно применение контакторов будет рассмотрено подробнее в посте про категории надежности электроснабжения и схемы АВР.
Источник: pikabu.ru