Коэффициент трансформации
Трансформатор представляет собой одно,- или многообмоточную систему на общем магнитопроводе, связанные взаимоиндукцией и предназначенные для преобразования (трансформации) величины напряжения переменного тока без изменения частоты. Что такое коэффициент трансформации, и как определяется эта величина? Коэффициентом трансформации называется характеристика трансформатора, которая определяет его преобразовательные свойства. Данное свойство является основным и находится в общем случае отношением числа витков в обмотках.
Кроме преобразования, трансформаторы выполняют роль гальванической развязки входных и выходных цепей (исключение – автотрансформатор).
Свойства трансформатора
Большинство людей знакомо с трансформаторами только в том смысле, что они являются преобразователями переменного напряжения, повышающими или понижающими.
К сведению. На самом деле трансформатор не является преобразователем. Он масштабирует в определенных пределах электрические величины.
Соответственно, можно говорить о трансформаторах:
Трансформатор напряжения
Наиболее известное устройство. Включается параллельно нагрузке. Его задача состоит в изменении входного напряжения с заданным коэффициентом. Как определить этот коэффициент? В простейшем случае он численно равен отношению количества витков в обмотках. Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.
Включение трансформатора напряжения
Обратите внимание! В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.
Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).
Определение коэффициента трансформации производится по формуле:
Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь. Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает. Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.
Пример. Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.
У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода. К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.
Трансформатор тока
Данное устройство более известно тем, кто занимается измерениями и обслуживанием мощных электрических установок. Измерение токов больших величин связано с определенными затруднениями, связанными с обеспечением безопасности и трудностями в изготовлении измерительных приборов для непосредственного измерения. Кроме измерений, сигналы с данных устройств используются системами защиты и сигнализации.
Включение трансформатора тока
Трансформатор тока подключается в цепь последовательно с нагрузкой. Соответственно, ток в первичной обмотке в точности равен току нагрузки. На вторичной обмотке получается напряжение, пропорциональное коэффициенту трансформации тока.
Коэффициент трансформации определяется таким же образом, как и для трансформаторов напряжения, но с поправкой на ток холостого хода, который вызван намагничиванием и потерями в магнитопроводе.
Данные устройства тока имеют специфические области применения, поэтому их строго классифицируют по нескольким критериям:
- По назначению бывают защитные, измерительные, лабораторные, промежуточные;
- По типу установки – внутренние, наружные, переносные, накладные, встроенные;
- По типу конструкции – одно,- и многовитковые или шинные;
- По типу изоляции – сухие, масляно-бумажные, с компаундной заливкой или газонаполненные;
- По рабочему напряжению. Для трансформаторов тока отечественного производства установлен ряд стандартных рабочих напряжений от 0.66 до 1150 кВ;
- По номинальному первичному току. Также существует диапазон градаций от 1 до 40000 А. Это основной показатель, по которому выбирается необходимый трансформатор тока;
- По номинальному вторичному току. Обычно 1 или 5 А, но в некоторых случаях может быть 2 или 2.5 А;
- По мощности вторичной нагрузки – от 1 до 120 ВА;
- По числу ступеней преобразования – одно,- и многоступенчатые.
К сведению. Характеристики, определяющие тип и назначение трансформаторов тока, указываются на заводской бирке изделия.
Коэффициент трансформации трансформатора тока в характеристиках не указывается, но его легко определить самостоятельно, зная значения первичного и вторичного токов, указанных в технических характеристиках. Коэффициент трансформации тока равен их отношению:
В отличие от аналогичных устройств, токовые трансформаторы нельзя включать без нагрузки, поскольку это приведет к выходу их из строя и появлению на выходных клеммах опасно высокой ЭДС.
Трансформатор сопротивления
Подобное устройство можно назвать еще согласующим трансформатором, так как его задача – согласовывать сопротивления источника и нагрузки для точной передачи сигнала в различных каскадах электронных схем. В данном случае не важны значения напряжений и токов в цепях, поскольку определяющим является согласованная работа каскадов с разными сопротивлениями, которые и трансформируют трансформатор сопротивления.
Включение согласующего трансформатора
Коэффициент трансформации трансформатора сопротивления также определяется отношением количества витков обмоток, но в отношении сопротивления нагрузки и источника используется квадратичная зависимость, формула такова:
Таким образом, если известны сопротивления нагрузки и источника, требуемый коэффициент трансформации находится из зависимости:
В дальнейшем найденный коэффициент трансформации используется для расчета обмоток.
Видео
Источник: elquanta.ru
Коэффициент трансформации тока и примеры его расчетов
Все трансформаторы тока обладают рядом характеристик, которые позволяют использовать устройство в той или иной ситуации в зависимости от индивидуальных целей. Выбор конкретного трансформирующего прибора обусловлен в том числе и коэффициентом трансформатора тока. Как рассчитать эту величину и применить ее на практике? Рассмотрим основные виды трансформаторов этого типа.
Базовая классификация устройств трансформаторного тока
Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:
- Классы по способу установки:
- Монтируемые на поверхности или опорные трансформаторы.
- Проходные, которые крепятся к шинопроводу и играют роль изолятора.
- Шинные, прикрепленные к шине, выполняющей функцию первичной обмотки.
- Встроенные, устанавливаемые устройствах силового типа, а также баковых выключателях.
- Разъемные, оперативно устанавливающиеся на кабелях и не требующие отключения цепи.
Трансформатор тока: а) – устройство трансформатора тока.
- Классы по типологическим особенностям изоляции:
- С изоляцией литого типа, в качестве которой используется эпоксидная смола и специальные изолирующие лаки.
- Помещенные в корпус из пластмассы.
- Имеющие высокоэффективную твердую полимерную, бакелитовую или фарфоровую изоляцию.
- Изолированные вязкими составами, обладающими обволакивающими свойствами.
- Масляные, изолированные специальными составами.
- Газонаполненные, использующиеся для высоких и сверхвысоких напряжений.
- А также смешанная бумажно-масляная изоляция с внушительным ресурсом эффективности.
>
Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный
Классификация в зависимости от коэффициента трансформации ↑
Еще один немаловажный момент при выборе нужного трансформатора — это коэффициент трансформации тока (Кт).
По количеству коэффициентов трансформаторы тока можно определять как:
- Одноступенчатые, имеющие всего один коэффициент трансформации.
- Многоступенчатые, имеющие два и более Кт. Еще их называют каскадными. Большее число Кт получается в результате изменения количества витков в обмотках, а также при наличии вариативности, то есть нескольких вторичных обмоток.
Как выбрать трансформатор тока по коэффициенту трансформации? ↑
При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования. Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе. Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.
Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.
Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .
Как определить коэффициент трансформации самостоятельно? ↑
Как правило такие параметры обязательно указываются в документации, прилагающейся к трансформатору, а также в обязательном порядке обозначаются на оборудовании или корпусе устройства. Но бывает, что Кт трансформатора тока необходимо определить самостоятельно, имея только данные, полученные эмпирическим путем. Как это сделать?
Через первичную обмотку такого устройства необходимо пропустить ток, замкнув накоротко вторичную обмотку. Затем соответствующим прибором нужно измерить величину электрического тока, который проходит во время эксперимента по вторичной обмотке.
Первичная и вторичная обмотки.
После этого, следует значение первичного тока, которое было подано на первичную обмотку, разделить на значение тока, полученное в результате наших замеров во вторичной обмотке. Частное и будет искомым коэффициентов трансформации.
Особенности расчетов коэффициента трансформации ↑
Расчет отношений первичного и вторичного токов может вестись в двух направлениях в зависимости от задач, которые стоят перед специалистом.
Коэффициент трансформации трансформатора тока можно разделить на:
- действительное значение (N);
- номинальное значение (Nн).
В первом случае мы находим соотношение действительного первичного тока к действительному вторичному току. Во втором – отношение номинального первичного тока к номинальному.
К примерам стандартных величин коэффициента ТТ можно отнести: 150/5 (N=30), 600/5 (N=120), 1000/5 (N=200) и 100/1 (N=100).
Примеры расчетов ↑
Рассмотрим принцип расчета потребления на примере трансформатора тока с коэффициентов трансформации 100/5. Как определить коэффициент трансформации трансформатора тока? Если вы сняли показания счетчика по учету электроэнергии и значение показаний оказалось равно 100 кВт/часов, при этом прибор используется с трансформатором 100/5. То расчет фактического потребления не пониженных значений следует производить следующим образом:
Сперва следует узнать во сколько раз ваш трансформатор снижает ток нагрузки. Для этого нужно просто 100 разделить на 5 — вы получите значение коэффициента — 20.
Узнать реально существующий расход электроэнергии можно, взяв коэффициент и умножив его на значение вашего прибора учета, то есть на 100 кВт. Реальное потребление составило 2000 кВт/часов.
Особенности значений, получаемых при измерении коэффициента трансформации ↑
Измеряя коэффициент трансформации ТТ, следует знать, что допустимые отклонения полученного значения от прописанных в документации или показателей аналогичного полностью исправного прибора не должны быть более 2 процентов.
Особенностью замеров у встроенных устройствах является то, что все показания снимаются только на ответвлениях, которые являются рабочими. Остальные же части обмоток в расчет не берутся и не проверяются.
Разделительное трансформирующее устройство на вторичной обмотке может создавать напряжение около 5В, а значение тока должно быть около 1000А.
На что еще обратить внимание при выборе трансформатора? ↑
Не забывайте, что любое оборудование также имеет свой срок «годности». Потому, при покупке обязательно проверьте год и квартал выпуска вашего трансформатора. Напомним, что межповерочные интервалы у всех ТТ должны составлять не более 4 лет с момента изготовления.
Разновидности трансформаторов тока.
Чтобы избежать покупки просроченного оборудования, обязательно сверьте данные, которые указаны в паспорте изделия и на шильдике, закрепленном на корпусе трансформатора. Они должны полностью совпадать.
Если вы приобретаете трехфазный счетчик, то с момента выпуска и до пломбировки должно пройти не более года иначе вам придется потратить дополнительные средства, оплачивая государственную проверку или покупку более «свежего» прибора учета. Чтобы проверить дату, обратите внимание на свинцовую пломбу — там указан квартал выпуска римскими цифрами.
Источник: energiatrend.ru
Коэффициент трансформации счетчика электроэнергии
Разберемся, что такое, коэффициент трансформации. По сути это техническая величина. Все дело в следующем. В целях учета электроэнергии, потребленной крупным объектом (вроде жилой многоэтажки), появляется необходимость использования специализированного оборудования, понижающего мощность напряжения, передаваемого на контакты общедомового счетчика.
Эти приборы учета не соединяют, непосредственно с электрической сетью дома, в связи с невозможностью подключения большой мощности напряжения, через традиционный счетчик прямого включения (они не работают с большими токами).
Для того, чтобы не допустить выхода из строя счетчика, нужно уменьшить мощность подаваемого напряжения.
Для этих целей используют трансформаторы, их подбирают исходя из требуемого уровня нагрузки.
Коэффициент трансформации счетчика электроэнергии, изменяется в зависимости от смонтированного оборудования. Таким образом, прибор учета электроэнергии, работающий в паре с трансформатором, считывает нагрузку, пониженную в 30, 40 или 60 раз. Проще говоря, эти цифры и представляют собой коэффициенты трансформации.
Как определить коэффициент трансформации?
Часто бывает так, что на приобретенном трансформаторе, невозможно найти нужной информации, в частности данных, об уровне преобразования, подаваемого на него напряжения. Эта информация важна для выбора прибора учета электроэнергии. Обладая данными о коэффициенте трансформации используемого оборудования, можно понять, во сколько раз снижена электрическая нагрузка. Узнать эти показатели, можно проведя определенные расчеты.
Для этого, вам понадобиться выяснить уровень напряжения на вторичной обмотке. Далее цифры показателей тока, на первичной обмотке, делят на полученное значение (данные на вторичной обмотке). Таким образом, вы узнаете нужный вам коэффициент, для прибора учета электроэнергии.
Расчетный коэффициент учета, что это такое?
Для уточнения реального уровня электропотребления, необходимо снять показания с вашего прибора учета электроэнергии и умножить его на коэффициент трансформации трансформатора (то есть в 30,40 или 60 раз). Это будет выглядеть приблизительно следующим образом. На циферблате установленного у вас счетчика учета электроэнергии, показана цифра 60 кВт*ч. В доме используется трансформатор, понижающий напряжение в 20 раз (это коэффициент). Умножаем обе цифры (60*20=1200кВт*ч) . Получившаяся цифра и есть реальный расход электроэнергии.
>
Разновидности приборов учета электроэнергии
Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.
На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).
Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.
В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.
Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.
Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.
Источник: asd-ekb.ru
Коэффициент трансформации трансформатора тока и напряжения
Это почти то же, что и передаточное отношение двух сцепленных шестеренок. Только в шестеренках берется отношение количества зубцов в одной и другой шестеренке, а в трансформаторе коэффициент трансформации — это тоже отношение, только количества витков в первичной обмотке к количеству витков во вторичной обмотке.
В трансформаторе электроэнергия никуда не преобразуется. Изменению подвергаются только ее параметры «протекания» по проводнику, а с характером энергии — электрическая — и передаваемой мощностью — то есть, количеством энергии — ничего не происходит. Действительно, мы знаем, что трансформатор может уменьшить или увеличить напряжение, при этом ток пропорционально изменится тоже, но в сторону противоположную.
Трансформатор, у которого количество витков вторичной обмотки больше, чем количество витков первичной, является повышающим. А трансформатор, у которого количество витков во вторичной обмотке меньше, чем количество витков в первичной — понижающим. Поэтому такое изменение параметров и называется не преобразованием, а масштабированием, или трансформацией.
Масштаб — это, как известно, всего одно число, несмотря на то, что трансформации подвергаются сразу два параметра — ток и напряжение.
Трансформатор — устройство, в котором нет подвижных частей, имеет конструкцию жесткую, очень консервативную. То есть, в ней обычно нет деталей, которые можно легко отсоединить и посчитать, например, количество витков в обмотке. Да и обмотки бывают намотаны одна поверх другой. Обмотку что при этом, всю перематывать?
Имеется паспорт устройства, в нем прописаны номиналы входного и выходного напряжений. Как рассчитать коэффициент трансформации?
Имеются формулы, но они немного разные для разных вариантов подключения и целей трансформирования.
Расчет коэффициента трансформации по напряжениям
При прямом подключении трансформатора к источнику задача трансформатора — подать на нагрузку напряжение, масштабированное относительно напряжения в сети питания.
В сетях потребления трансформатор потребителя включают параллельно ко всем другим подобным трансформаторам потребителей. Коэффициент трансформации силового трансформатора n можно вычислить по формуле
- U1, U2 – входное и выходное напряжения на трансформаторе;
- ε – ЭДС, возникающая в обмотках трансформатора на каждом витке;
- W1, W2 – количество витков в обмотках, первичной (1) и вторичной (2);
- I1, I2 – ток в каждой из обмоток — первичной и вторичной;
- R1, R2 – активные сопротивления обмоток.
Обычные трансформаторы делаются так, чтобы минимизировать потери на активное сопротивление в них самих. А они пропорциональны токам в обмотках и обратно пропорциональны напряжениям. Поэтому первичные обмотки у понижающих трансформаторов делают из тонких медных эмалированных проводов, а вторичные — из довольно толстых.
В нашей формуле, если пренебречь активными сопротивлениями обмоток, то есть R1, R2
Трансформаторы, используемые в цепях потребления для масштабирования напряжений к номиналам потребляющих приборов, обычно и называют трансформаторы напряжения.
Коэффициент трансформации трансформатора тока
Измерительные трансформаторы располагают на линии, проходящей «мимо», они являются трансформаторами тока, и напряжение на вторичной обмотке у них померить просто нереально. Поэтому пользуются другим способом определения коэффициента трансформации: «пляшут» от токов, а не от напряжений. Получается коэффициент трансформации тока
Первичная обмотка включена в линию последовательно со всеми ее остальными нагрузками, и измерение коэффициента трансформации проводят по току, протекающему во вторичной обмотке.
Эти токи также зависят от количества витков в обмотках. Однако от силы тока в обмотках и от количества витков зависит ток «холостого хода» I, который складывается из тока намагничивания и тока, идущего на потери от разогрева трансформаторного магнитопровода:
Если эти потери невелики, то есть I
То есть в трансформаторах тока коэффициент трансформации находят как равный обратному отношению количества витков в обмотках — во вторичной обмотке к количеству витков в первичной обмотке.
Как определить этот показатель в цепях передачи мощности
При передаче энергии в конкретную нагрузку стараются согласовать мощность нагрузки во вторичной цепи с мощностью, извлекаемой трансформатором из цепи его первичной обмотки, то есть от источника. Такого согласования можно добиться, используя балластные сопротивления во вторичных цепях, а можно для этого использовать согласующий трансформатор.
Соотношение мощностей в этом случае будет
где S1 — мощность, потребляемая трансформатором из сети и S2 — мощность, отдаваемая трансформатором в нагрузку;
ΔS — потери мощности в самом трансформаторе — обычно их находят как равные 1–2% от мощности.
Пренебрегая этими малыми потерями трансформирующего устройства, получаем зависимости для мощностей
где Z1 — входное сопротивление цепи трансформатора с нагрузкой относительно первичной цепи,
Z2 — входное сопротивление цепи нагрузки трансформатора, подключенной к вторичной обмотке.
Так как цепи согласованы, то
Получается значение еще одного показателя, который называется коэффициентом трансформации по сопротивлению, и такой коэффициент трансформации равен отношению квадратов напряжений на первичной обмотке и на вторичной.
>
Как определить опытным путем?
В реальных практических случаях не всегда бывает возможно найти коэффициент трансформации чисто аналитическим путем, чему не помогает даже и использование калькуляторов. Например, трансформаторы, имеющие несколько обмоток. Коэффициент трансформации трехфазного трансформатора, вообще говоря, не один, а несколько, так как трехфазный трансформатор содержит несколько вторичных обмоток, которые намотаны на одном сердечнике. Или когда мы имеем перед собой трансформатор, но не знаем точное количество витков в обмотках.
Поэтому существуют методы опытного определения, основанные на измерении напряжений на входе трансформатора и напряжения на вторичных обмотках. Такие замеры необходимо делать на холостом ходу, причем одновременно на первичной и на вторичных обмотках. Из них и найдете искомые коэффициенты трансформации. Найденное значение послужит основой для дальнейших расчетов.
Источник: domelectrik.ru
Назначение и принцип действия трансформатора. Что такое коэффициент трансформации?
Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.
Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.
форматоры бывают однофазные и трехфазные, двух- и многообмоточные.
Рис. 212. Схема включения однофазного трансформатора
Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Коэффициент трансформации- Отношение напряжения на зажимах двух обмоток в режиме холостого кода. Коэффициент трансформации является основной характеристикой трансформатора. Он показывает, насколько изменяются основные параметры электрического тока, после того как он проходит через это устройство. Когда коэффициент трансформации больше 1 – трансформатор называется понижающим, если меньше – повышающим.
, , где
· , — входное и выходное напряжения соответственно
· , — число витков первичной и вторичной обмоток
· , — токи в первичной и вторичной цепях трансформатора
35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?
Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.
При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется сопротивлением короткого замыкания. Потери мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками. Они определяют экономичность работы трасформатора и режим работы электрической сети.
Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.
При протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.
Внешняя характеристика трансформатора представляет собой зависимость между вторичными током и напряжением при изменении нагрузки, неизменном значении первичного напряжения U1 и заданном коэффициенте мощности cos φ2 во вторичной цепи.
Рис. 6.3. Внешняя характеристика трансформатора
Вторичное напряжение U2 при нагрузке отличается от напряжения холостого хода на величину изменения напряжения, которое зависит от величины нагрузки.
Внешняя характеристика может быть построена как по расчетным данным активного и индуктивного падений напряжения (расчетная внешняя характеристика), так и по опытным данным (внешняя характеристика конкретного трансформатора). Построение внешней характеристики показано на рис. 6.3. По оси ординат откладывается вторичное напряжение U2, а по оси абсцисс — величина нагрузки α (в % или долях от номинальной мощности). Начальная точка внешней характеристики начинается от ординаты, равной U2НОМ, а другой ее конец, против абсциссы α = 1(т. е. при номинальной нагрузке), будет опущен против начала на величину ΔU — изменения напряжения.
Так как изменение напряжения пропорционально нагрузочному току I2 (см. § 6.1), то внешняя характеристика практически представляет прямую линию. На рис. 6.3 построены две внешние характеристики — для cos φ2=1и cos φ2= 0,8.
Положения характеристик зависят от мощности и характера нагрузки трансформатора и при малой мощности они могут поменяться местами (при активной и активно-индуктивной нагрузках).
36.Электроника. Виды электроники. Устройства информационной электроники.
Электро́ника — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и храненияи нформации.
Источник: lektsia.com