Схемы и рекомендации по подключению электродвигателя через конденсатор на 220В

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключить электродвигатель 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

  • что собой представляют двигатели обоих классов,
  • как они работают,
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить,
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Источник: electricvdele.ru

Как работает конденсаторный электродвигатель и для чего он нужен

В современном оборудовании используется несколько разные виды электродвигателей. Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по своим параметрам. Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети. Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.

Устройство и принцип работы

Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.

Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.

По своему устройству он не отличается от обычного асинхронника и в составе имеет:

  1. Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
  2. Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.

>

Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.

По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.

Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов. Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов.

В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.

Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой. Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей. В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.

Виды конденсаторных двигателей

Схема подключения, при которой конденсаторный асинхронный двигатель запускается только от пускового конденсатора, имеет один существенный минус. Во время работы магнитное поле не остается круговым или эллиптическим, показатели работы падают, а электродвигатель греется. В таком случае для оптимального режима в цепь включается рабочий конденсатор, обеспечивающий постоянный сдвиг фаз, а не только в момент пуска.

Отметим, что можно выделить две группы конденсаторных двигателей:

  1. Конденсатор нужен только для пуска, тогда его называют пусковым. Обычно это маломощные приборы.
  2. Конденсатор нужен для постоянной работы, в этом случае его называют рабочим. В машинах большой мощности (несколько кВт) для пуска под нагрузкой может не хватать момента, и тогда подключают дополнительно еще один пусковой конденсатор. Чаще всего это делают с помощью кнопки ПНВС.

Подробнее со схемой подключения и тем как отличить эти типы однофазных двигателей вы можете ознакомиться в следующем видео ролике:

В международной классификации применяются обозначения для типов конденсаторных асинхронных двигателей:

  • двигатель с пуском через конденсатор/работа через обмотку (индуктивность) (CSIR);
  • двигатель с пуском через конденсатор/работа через конденсатор (CSCR);
  • двигатель с постоянным разделением емкости (PSC).

Как работает такая схема представить несложно: пусковой конденсатор большой емкости обеспечивает пуск двигателя, а после набора мощности рабочий меньшей емкости обеспечивает максимально подходящий режим работы и скорости вращения ротора.

Для особых случаев, когда необходимо поддерживать необходимую скорость вращения ротора при разных нагрузках для рабочих конденсаторов, подбирают разные емкости с возможностью их переключения.

Чтобы изменить направление вращение, иначе говоря, включить реверс, нужно поменять местами концы одной из обмоток. Для этого удобно использовать 6 контактный тумблер.

Как подобрать емкость для пускового конденсатора

Сразу стоит сказать, что на шильдике двигателя обычно указывается ёмкость пускового и рабочего конденсатора (или только рабочего, если пусковой не нужен). При этом указываются точные данные характерные для конкретно этого электродвигателя с его особенностями устройства и работы.

Если шильдик затёрт или отсутствует, то рассчитать ёмкость рабочего и пускового конденсатора для однофазного можно скорее не по формуле, а по мнемоническому правилу:

Сумма рабочего и пускового конденсатора должна составлять 100 мкФ на 1 кВт мощности (70% пусковой и 30% рабочий). Если двигатель 1 кВт, то рабочий конденсатор нужен на 30 мкФ, а пусковой – на 70. А сами конденсаторы должны быть рассчитаны на напряжение больше чем в питающей сети. Обычно выбирают порядка 400 Вольт.

Но в литературе можно встретить и рекомендации о том, что, что ёмкость пускового конденсатора должна быть больше, чем емкость рабочего в 2 раза.

Как проверить работоспособность конденсатора подскажет статья, выложенная на нашем сайте ранее — https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Сфера практического применения

Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.

Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.

Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Источник: samelectrik.ru

Как подключить однофазный электродвигатель на 220 вольт

Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.

Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы. При этом необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.

Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал. Для того чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении. При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды. Вторая же обмотка включена все время. Для того чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.

Подключение электродвигателя на 220 вольт: мотор запускается путем подачи 220 вольт на рабочую и пусковую обмотки, а после набора необходимых оборотов нужно вручную отключить пусковую. Для того чтобы фазу сдвинуть, необходимо омическое сопротивление, которое и обеспечивают конденсаторы индуктивности. Встречается сопротивление как в виде отдельного резистора, так и в части самой пусковой обмотки, которая выполняется по бифилярной технике. Она работает так: индуктивность катушки сохраняется, а сопротивление становиться больше из-за удлиненного провода из меди. Такую схему можно наблюдать на рисунке 1: подключение электродвигателя 220 вольт.

>

Рисунок 1. Схема подключения электродвигателя 220 вольт с конденсатором

Существуют также моторы, у которых обе обмотки непрерывно подключены к сети, они называются двухфазные, потому как поле внутри вращается, а конденсатор предусмотрен, чтобы сдвигать фазы. Для работы такой схемы, обе обмотки имеют провод с равным друг другу сечением.

Схема подключения коллекторного электродвигателя на 220 вольт

Где можно встретить в быту?

Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель. Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

  • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
  • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.

Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.

Схема подключения электродвигателя 220 вольт через конденсаторы

В случае когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер

Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.

Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В

Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В

По формуле становится понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.

Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.

Это схема обмотки звездой

Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в 220 В, а двух других — линейного напряжения 380 В. Такой двигатель можно приспособить под однофазную сеть по рекомендациям на бирке: узнать для какого напряжения созданы обмотки, можно соединять их звездой или треугольником.

Схема обмотки треугольником проще. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно 220 В.

Это схема подключения с конденсатором асинхронного двигателя в однофазную сеть. Включает рабочие и пусковые конденсаторы.

  • применяем конденсаторы, ориентируясь на напряжение, минимум 300 или 400 В;
  • емкость рабочих конденсаторов набирается путем параллельного их соединения;
  • вычисляем таким образом: каждые 100 Вт — это еще 7 мкФ, учитывая, что 1 кВт равен 70 мкФ;
  • это пример параллельного соединения конденсаторов
  • емкость для пуска должна превышать в три раза емкость рабочих конденсаторов.

После прочтения статьи, рекомендуем ознакомиться с техникой подключения трехфазного двигателя в однофазную сеть:

Источник: bouw.ru

Подключение электродвигателя 380В на 220В

Общие правила подключения электродвигателя через конденсатор.

Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

Схемы подключения электродвигателя через конденсатор.

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

>

Cр=2800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр ; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

Реверс электродвигателя подключенного на 220 Вольт через конденсатор.

Итак, из схем приведенных выше следует, что при любом способе соединения обмоток (звезда или треугольник) в клеммной коробке двигателя остается три точки для его подключения к сети, условно: на первый вывод подключается ноль, на второй — фаза, а на третий подается фаза через конденсатор, но что делать если двигатель при запуске начал вращаться не в ту сторону в которую необходимо? Что бы изменить направление вращения двигателя подключенного через конденсатор необходимо просто переключить фазный провод с одного вывода электродвигателя на другой, а нулевой провод при этом оставить на том же выводе, т.е. условно: ноль оставить на первом выводе, фазу подать на третий, а на второй подать фазу через конденсатор.

Т.к. переключение выводов в клеммной коробке занимает определенное время, то в случае необходимости часто менять направление вращения конденсаторного электродвигателя лучше применять схему подключения через однополюсный пакетный переключатель на 2 направления:

При такой схеме в положении пакетного выключателя «0» двигатель будет отключен, а при положениях «1» и «2» запускаться по часовой либо против часовой стрелки.

Использование группы (блока) конденсаторов.

При подключении электродвигателя через конденсатор очень важно как можно точнее подобрать его емкость. Чем ближе будет значение фактической емкости конденсатора к расчетной тем более оптимальным будет сдвиг вектора напряжения относительно вектора тока, что в свою очередь даст более высокие показатели момента на валу двигателя и его КПД.

Например: согласно расчету необходимая емкость рабочего конденсатора составила 54 мкФ, при этом найти конденсатор подходящей емкости не удается, в таком случае наиболее целесообразным вариантом является использование группы параллельно соединенных конденсаторов (конденсаторного блока).

Как известно, при параллельном соединении конденсаторов их емкость суммируется, таким образом, что бы получить нужные нам 54 мкФ можно использовать 2 параллельно соединенных конденсатора — на 40 и на 14 мкФ (40+14=54), либо любое другое количество конденсаторов суммарная емкость которых будет давать нужное значение, например 30, 20 и 4 мкФ:

Примечание: Все конденсаторы в группе должны быть одного типа, иметь одинаковое номинальное напряжение и частоту.

Подробнее о схемах подключения конденсаторов и расчета их характеристик читайте в статье: Схемы соединения конденсаторов — расчет емкости.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: elektroshkola.ru

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели – это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Источник: electrik.info